修建一個(gè)面積為平方米的矩形場地的圍墻,要求在前面墻的正中間留一個(gè)寬度為2米的出入口,后面墻長度不超過20米.已知后面墻的造價(jià)為每米45元,其他墻的造價(jià)為每米180元,設(shè)后面墻長度為米,修建此矩形場地圍墻的總費(fèi)用為元.
(1)求的表達(dá)式;
(2)試確定,使修建此矩形場地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

(1);(2)若,則當(dāng)時(shí)
最小總費(fèi)用為(元);若時(shí),當(dāng)時(shí),最小總費(fèi)用為(元).

解析試題分析:(1)設(shè)矩形的另一邊長為米,依題意可得列出的表達(dá)式(含):,另一方面,進(jìn)而得到,代入上式即可得到的表達(dá)式(不含);(2)先考慮函數(shù)的單調(diào)性:遞減,在遞增;進(jìn)而針對(duì)兩種情況進(jìn)行分類討論,確定為何值時(shí),總費(fèi)用最低.
試題解析:(1)設(shè)矩形的另一邊長為米                  1分
      3分
由已知,所以          5分
(2),則,可以證明遞減
遞增                            7分
,即,則當(dāng)時(shí)
最小總費(fèi)用為(元)                  10分
,即,則當(dāng)時(shí),最小總費(fèi)用為(元) 13分.
考點(diǎn):函數(shù)的應(yīng)用問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了保護(hù)環(huán)境,某工廠在國家的號(hào)召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測算,處理成本(萬元)與處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:
,且每處理一噸廢棄物可得價(jià)值為萬元的某種產(chǎn)品,同時(shí)獲得國家補(bǔ)貼萬元.
(1)當(dāng)時(shí),判斷該項(xiàng)舉措能否獲利?如果能獲利,求出最大利潤;
如果不能獲利,請求出國家最少補(bǔ)貼多少萬元,該工廠才不會(huì)虧損?
(2)當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(km/h)是車流密度x(輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/km時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/km時(shí),車流速度為60km/h,研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x·v(x)可以達(dá)到最大,并求出其最大值.(精確到1輛/小時(shí)) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求下列各式的值.
(1)log535+2-log5-log514;
(2)log2×log3×log5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x均有f(x)=kf(x+2),其中常數(shù)k為負(fù)數(shù),且f (x)在區(qū)間[0,2]上有表達(dá)式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值;
(2)寫出f(x)在[-3,3]上的表達(dá)式,并討論函數(shù)f(x)在[-3,3]上的單調(diào)性;
(3)求出f(x)在[-3,3]上的最小值與最大值,并求出相應(yīng)的自變量的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在R上的函數(shù)及二次函數(shù)滿足:
(1)求的解析式;
(2);
(3)設(shè),討論方程的解的個(gè)數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某物體的溫度θ(單位:攝氏度)隨時(shí)間t(單位:分鐘)的變化規(guī)律是:θ=m·2t+21-t(t≥0,且m>0).
(1)如果m=2,求經(jīng)過多少時(shí)間,物體的溫度為5攝氏度.
(2)若物體的溫度總不低于2攝氏度,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一次函數(shù)上的增函數(shù),,已知
(1)求
(2)若單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),有最大值,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)命題pf(x)=在區(qū)間(1,+∞)上是減函數(shù);命題qx1x2是方程x2ax-2=0的兩個(gè)實(shí)根,且不等式m2+5m-3≥|x1x2|對(duì)任意的實(shí)數(shù)a∈[-1,1]恒成立.若pq為真,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案