精英家教網 > 高中數學 > 題目詳情

一次函數上的增函數,,已知
(1)求
(2)若單調遞增,求實數的取值范圍;
(3)當時,有最大值,求實數的值.

(1);(2);(3).

解析試題分析:(1)先設,然后由恒成立得方程組,求解方程組即可,注意取的解;(2)由(1)得,根據二次函數的圖像與性質可知,要使單調遞增,只須該函數的對稱軸大于或于1即可;(3)這是二次函數中定區(qū)間,而軸不定的最值問題,結合函數的圖像,分對稱軸在定區(qū)間的中點的左邊、對稱軸在定區(qū)間的中點的右邊兩種情況進行分類求解即可.
試題解析:(1)∵上的增函數,∴設          1分

                              3分
解得(不合題意舍去)                  5分
                             6分
(2)       7分
對稱軸,根據題意可得                8分
解得
的取值范圍為                       9分
(3)①當時,即
,解得,符合題意           11分
②當時,即
,解得,符合題意          13分
由①②可得                     14分.
考點:1.函數的解析式;2.二次函數的圖像與性質;3.函數的單調性與最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某單位決定對本單位職工實行年醫(yī)療費用報銷制度,擬制定年醫(yī)療總費用在2萬元至10萬元(包括2萬元和10萬元)的報銷方案,該方案要求同時具備下列三個條件:①報銷的醫(yī)療費用y(萬元)隨醫(yī)療總費用x(萬元)增加而增加;②報銷的醫(yī)療費用不得低于醫(yī)療總費用的50%;③報銷的醫(yī)療費用不得超過8萬元.
(1)請你分析該單位能否采用函數模型y=0.05(x2+4x+8)作為報銷方案;
(2)若該單位決定采用函數模型y=x-2lnx+a(a為常數)作為報銷方案,請你確定整數a的值.(參考數據:ln2≈0.69,ln10≈2.3)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

修建一個面積為平方米的矩形場地的圍墻,要求在前面墻的正中間留一個寬度為2米的出入口,后面墻長度不超過20米.已知后面墻的造價為每米45元,其他墻的造價為每米180元,設后面墻長度為米,修建此矩形場地圍墻的總費用為元.
(1)求的表達式;
(2)試確定,使修建此矩形場地圍墻的總費用最小,并求出最小總費用.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=.
(1)求函數f(x)的最小值;
(2)已知m∈R,命題p:關于x的不等式f(x)≥m2+2m-2對任意m∈R恒成立;q:函數y=(m2-1)x是增函數.若“pq”為真,“pq”為假,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=loga(3-ax).
(1)當x∈[0,2]時,函數f(x)恒有意義,求實數a的取值范圍.
(2)是否存在這樣的實數a,使得函數f(x)在區(qū)間[1,2]上為減函數,并且最大值為1?如果存在,試求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設y=(log2x)2+(t-2)log2x-t+1,若t在[-2,2]上變化時,y恒取正值,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求實數a的取值范圍.
(2)設g(x)為定義在R上的奇函數,且當x<0時,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場對A品牌的商品進行了市場調查,預計2012年從1月起前x個月顧客對A品牌的商品的需求總量P(x)件與月份x的近似關系是:
P(x)=x(x+1)(41-2x)(x≤12且x∈N*)
(1)寫出第x月的需求量f(x)的表達式;
(2)若第x月的銷售量g(x)=
(單位:件),每件利潤q(x)元與月份x的近似關系為:q(x)=,問:該商場銷售A品牌商品,預計第幾月的月利潤達到最大值?月利潤最大值是多少?(e6≈403)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某家具廠生產一種兒童用組合床柜的固定成本為20000元,每生產一組該組合床柜需要增加投入100元,已知總收益滿足函數:,其中是組合床柜的月產量.
(1)將利潤元表示為月產量組的函數;
(2)當月產量為何值時,該廠所獲得利潤最大?最大利潤是多少?(總收益=總成本+利潤).

查看答案和解析>>

同步練習冊答案