【題目】如圖,已知長(zhǎng)方體的長(zhǎng)和寬都是cm,高是4 cm.
(1)求BC和A′C′所成的角的度數(shù).
(2)求AA′和BC′所成的角的度數(shù).
【答案】(1);(2)
【解析】試題分析:(1)根據(jù)長(zhǎng)方體的性質(zhì)可得,所以為與所成的角,由正方形的性質(zhì)可得,從而可得結(jié)果;(2)長(zhǎng)方體中, ,所以為與所成的角,利用直角三角形的性質(zhì)可得,所以與所成的角為.
試題解析:(1)在長(zhǎng)方體中,BC∥B′C′,所以∠A′C′B′為BC與A′C′所成的角,因?yàn)?/span>A′B′=B′C′=cm,∠A′B′C′=90°,所以∠A′C′B′=45°,所以BC和A′C′所成的角為45°.
(2)在長(zhǎng)方體中,AA′∥BB′,所以∠C′BB′為AA′與BC′所成的角,因?yàn)?/span>BB′=4 cm,B′C′= cm,所以∠C′BB′=60°,所以AA′和BC′所成的角為60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 過橢圓: ()的短軸端點(diǎn), , 分別是圓與橢圓上任意兩點(diǎn),且線段長(zhǎng)度的最大值為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)作圓的一條切線交橢圓于, 兩點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說:“是或作品獲得一等獎(jiǎng)”;
乙說:“作品獲得一等獎(jiǎng)”;
丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉辦安全法規(guī)知識(shí)競(jìng)賽,從參賽的高一、高二學(xué)生中各抽出100人的成績(jī)作為樣本,對(duì)高一年級(jí)的100名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),并按, , , , , 分組,得到成績(jī)分布的頻率分布直方圖(如圖)。
(1)若規(guī)定60分以上(包括60分)為合格,計(jì)算高一年級(jí)這次競(jìng)賽的合格率;
(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此,估計(jì)高一年級(jí)這次知識(shí)競(jìng)賽的學(xué)生的平均成績(jī);
(3)若高二年級(jí)這次競(jìng)賽的合格率為,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并問是否有的把握認(rèn)為“這次知識(shí)競(jìng)賽的成績(jī)與年級(jí)有關(guān)”。
高一 | 高二 | 合計(jì) | |
合格人數(shù) | |||
不合格人數(shù) | |||
合計(jì) |
附:參考數(shù)據(jù)與公式
高一 | 合計(jì) | ||
合格人數(shù) | a | b | a+b |
不合格人數(shù) | c | d | c+d |
合計(jì) | a+c | b+d | n |
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三條直線l1:2x-y+a =" 0" (a>0),直線l2:-4x+2y+1 = 0和直線l3:x+y-1= 0,且l1與l2的距離是.
(1)求a的值;
(2)能否找到一點(diǎn)P,使得P點(diǎn)同時(shí)滿足下列三個(gè)條 件:
①P是第一象限的點(diǎn);
②P 點(diǎn)到l1的距離是P點(diǎn)到l2的距離的;
③P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是∶.若能,求P點(diǎn)坐標(biāo);若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,點(diǎn)的極坐標(biāo)為,圓以為圓心,4為半徑;又直線的極坐標(biāo)方程為。
(Ⅰ)求直線和圓的普通方程;
(Ⅱ)試判定直線和圓的位置關(guān)系.若相交,則求直線被圓截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,證明a>0,并利用二分法證明方程f(x)=0在區(qū)間[0,1]內(nèi)有兩個(gè)實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生研究性學(xué)習(xí)小組發(fā)現(xiàn),學(xué)生上課的注意力指標(biāo)隨著聽課時(shí)間的變化而變化,老師講課開始時(shí),學(xué)生的興趣激增;接下來學(xué)生的興趣將保持較理想的狀態(tài)一段時(shí)間,隨后學(xué)生的注意力開始分散.設(shè) 表示學(xué)生注意力指標(biāo),該小組發(fā)現(xiàn) 隨時(shí)間 (分鐘)的變化規(guī)律( 越大,表明學(xué)生的注意力越集中)如下: (,且 )
若上課后第 分鐘時(shí)的注意力指標(biāo)為 ,回答下列問題:
(1)求 的值;
(2)上課后第 分鐘時(shí)和下課前 分鐘時(shí)比較,哪個(gè)時(shí)間注意力更集中?并請(qǐng)說明理由.
(3)在一節(jié)課中,學(xué)生的注意力指標(biāo)至少達(dá)到 的時(shí)間能保持多長(zhǎng)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com