【題目】隨機調(diào)查某城市80名有子女在讀小學(xué)的成年人,以研究晚上八點至十點時間段輔導(dǎo)子女作業(yè)與性別的關(guān)系,得到下面的數(shù)據(jù)表:

    是否輔導(dǎo)

性別

輔導(dǎo)

不輔導(dǎo)

合計

25

60

合計

40

80

1)請將表中數(shù)據(jù)補充完整;

2)用樣本的頻率估計總體的概率,估計這個城市有子女在讀小學(xué)的成人女性晚上八點至十點輔導(dǎo)子女作業(yè)的概率;

3)根據(jù)以上數(shù)據(jù),能否有99%以上的把握認(rèn)為“晚上八點至十點時間段是否輔導(dǎo)子女作業(yè)與性別有關(guān)?”.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

【答案】1)見解析;(2;(3)有把握.

【解析】

1)由表可依次求出男性不輔導(dǎo)的人數(shù)、女性輔導(dǎo)的人數(shù)、不輔導(dǎo)的人數(shù)、女性的人數(shù)、女性不輔導(dǎo)的人數(shù),由此得到答案;

2)根據(jù)頻率的計算公式求解即可;

3)求出,然后與比較大小,由此可求得結(jié)論.

解:(1)如表,

    是否輔導(dǎo)

性別

輔導(dǎo)

不輔導(dǎo)

合計

25

35

60

15

5

20

合計

40

40

80

2)在樣本中有20位女士,其中有15位輔導(dǎo)孩子作業(yè),其頻率為,

∴估計成人女士晚上八點至十點輔導(dǎo)孩子作業(yè)的概率為;

3)∵,

∴有99%的把握認(rèn)為“晚上八點至十點時間是否段輔導(dǎo)孩子作業(yè)與性別有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10)

某單位建造一間地面面積為12m2的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長度x不得超過米,房屋正面的造價為400/m2,房屋側(cè)面的造價為150/m2,屋頂和地面的造價費用合計為5800元,如果墻高為3m,且不計房屋背面的費用.

1)把房屋總造價表示成的函數(shù),并寫出該函數(shù)的定義域.

2)當(dāng)側(cè)面的長度為多少時,總造價最底?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,且Snnn+2)(nN*).

1)求數(shù)列{an}的通項公式;

2)設(shè)bn,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場在促銷期間規(guī)定:商場內(nèi)所有商品按標(biāo)價的出售,當(dāng)顧客在商場內(nèi)消費一定金額后,按如下方案獲得相應(yīng)金額的獎券:

消費金額(元)的范圍

獲得獎券的金額(元)

30

60

100

130

根據(jù)上述促銷方法,顧客在該商場購物可以獲得雙重優(yōu)惠,例如:購買標(biāo)價為400元的商品,則消費金額為320元,獲得的優(yōu)惠額為:元,設(shè)購買商品得到的優(yōu)惠率=(購買商品獲得的優(yōu)惠額)/(商品標(biāo)價),試問:

1)若購買一件標(biāo)價為1000元的商品,顧客得到的優(yōu)惠率是多少?

2)對于標(biāo)價在(元)內(nèi)的商品,顧客購買標(biāo)價為多少元的商品,可得到不小于的優(yōu)惠率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,其中為常數(shù).

1)證明: ;

2)是否存在,使得為等差數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,MN是小圓的一條固定直徑的兩個端點,那么,當(dāng)小圓這樣滾過大圓內(nèi)壁的一周,點M,N在大圓內(nèi)所繪出的圖形大致是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知拋物線的焦點為,上異于原點的任意一點,過點的直線于另一點,交軸的正半軸于點,且有.當(dāng)點的橫坐標(biāo)為時,為正三角形.

)求的方程;

)若直線,且有且只有一個公共點,

)證明直線過定點,并求出定點坐標(biāo);

的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在直角中,為直角,,分別為,的中點,將沿折起,使點到達(dá)點的位置,連接,的中點.

(Ⅰ)證明:

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點為橢圓的右焦點,過的直線與橢圓交于、兩點,線段的中點為.

1)求橢圓的方程;

2)若直線、斜率的乘積為,兩直線,分別與橢圓交于、四點,求四邊形的面積.

查看答案和解析>>

同步練習(xí)冊答案