【題目】已知數(shù)列的前項和為,其中為常數(shù).

1)證明:

2)是否存在,使得為等差數(shù)列?并說明理由.

【答案】1)證明見解析;(2.

【解析】試題分析:(I)對于含遞推式的處理,往往可轉(zhuǎn)換為關于項的遞推式或關于的遞推式.結(jié)合結(jié)論,該題需要轉(zhuǎn)換為項的遞推式.故由.兩式相減得結(jié)論;(II)對于存在性問題,可先探求參數(shù)的值再證明.本題由,列方程得,從而求出.得,故數(shù)列的奇數(shù)項和偶數(shù)項分別為公差為4的等差數(shù)列.分別求通項公式,進而求數(shù)列的通項公式,再證明等差數(shù)列.

試題解析:(I)由題設, , .兩式相減得,

由于,所以

II)由題設, , ,可得,由(I)知, .令,解得

,由此可得, 是首項為1,公差為4的等差數(shù)列,

是首項為3,公差為4的等差數(shù)列,

所以,

因此存在,使得為等差數(shù)列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設x,y滿足約束條件 ,若目標函數(shù)2z=2x+ny(n>0),z的最大值為2,則y=tan(nx+ )的圖象向右平移 后的表達式為(
A.y=tan(2x+
B.y=tan(x﹣
C.y=tan(2x﹣
D.y=tan2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在直三棱柱中, 中點.

)求證: 平面

)若,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點.

(1)求橢圓的方程;

(2)已知的中點,是否存在定點,對于任意的都有,若存在,求出點的坐標;若不存在,請說明理由;

(3)若過點作直線的平行線交橢圓于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,為坐標原點,已知兩點軸的正半軸上,點軸的正半軸上.若

)求向量夾角的正切值.

)問點在什么位置時,向量,夾角最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知多面體中,四邊形為矩形, , ,平面平面, 、分別為的中點.

)求證:

)求證: 平面

)若過的平面交于點,交,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是( )

A. 若兩條直線和同一個平面所成的角相等,則這兩條直線平行

B. 若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行

C. 若兩個平面都垂直于第三個平面,則這兩個平面平行

D. 若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,M為平面上任一點,A,B,C三點滿足

(1)的值;

(2)已知A(1,sinx)、B(1+sinx,sinx),M(1+sinx,sinx),x∈(0,π),且函數(shù)

的最小值為,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為,則判斷框內(nèi)應填入(

A. B. C. D.

查看答案和解析>>

同步練習冊答案