【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實數(shù)a的取值范圍是(
A.[ ]
B.[ , ]
C.[ , ]
D.[ , ]

【答案】A
【解析】解:將函數(shù)f(x)=2cos2x的圖象向右平移 個單位后得到函數(shù)g(x)的圖象, 得g(x)=2cos2(x﹣ )=2cos(2x﹣ ),
,得
當k=0時,函數(shù)的增區(qū)間為[ ],當k=1時,函數(shù)的增區(qū)間為[ ].
要使函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,
,解得a∈[ ].
故選:A.
【考點精析】解答此題的關鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某品牌新款夏裝即將上市,為了對新款夏裝進行合理定價,在該地區(qū)的三家連鎖店各進行了兩天試銷售,得到如下數(shù)據(jù):

連鎖店

售價(元)

80

86

82

88

84

90

銷量(件)

88

78

85

75

82

66

(1)分別以三家連鎖店的平均售價與平均銷量為散點,求出售價與銷量的回歸直線方程;

(2)在大量投入市場后,銷量與單價仍然服從(1)中的關系,且該夏裝成本價為40元/件,為使該新夏裝在銷售上獲得最大利潤,該款夏裝的單價應定為多少元?(保留整數(shù))

附:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品要了解年廣告費(單位:萬元)對年利潤(單位:萬元)的影響,對近4年的年廣告費和年利潤數(shù)據(jù)作了初步整理,得到下面的表格:

廣告費

2

3

4

5

年利潤

26

39

49

54

(Ⅰ)用廣告費作解釋變量,年利潤作預報變量,建立關于的回歸直線方程;

(Ⅱ)根據(jù)(Ⅰ)的結果預報廣告費用為6萬元時的年利潤.

附:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計分別為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,解不等式;

2)是否存在實數(shù),使不等式對一切實數(shù)恒成立?若存在,求出的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 對任意實數(shù)a≠0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】省農(nóng)科站要檢測某品牌種子的發(fā)芽率,計劃采用隨機數(shù)表法從該品牌粒種子中抽取粒進行檢測,現(xiàn)將這粒種子編號如下,,,若從隨機數(shù)表第行第列的數(shù)開始向右讀,則所抽取的第粒種子的編號是 .(下表是隨機數(shù)表第行至第行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),若以原點為極點,軸正半軸為極軸建立極坐標系,已知圓的極坐標方程為,設是圓上任一點,連結并延長到,使.

(1)求點軌跡的直角坐標方程;

(2)若直線與點軌跡相交于兩點,點的直角坐標為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為平面內(nèi)不共線的三點,表示的面積

(1)若;

(2)若,,證明:;

(3)若,,,其中,且坐標原點恰好為的重心,判斷是否為定值,若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列的公比,前項和為,且滿足.,,分別是一個等差數(shù)列的第1項,第2項,第5項.

(1)求數(shù)列的通項公式;

(2)設,求數(shù)列的前項和;

(3)若的前項和為,且對任意的滿足,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案