(本題滿分12分)在四棱錐P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求證:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.
解:(Ⅰ)證明:∵PA⊥平面ABCD   ∴PA⊥BD
∵ABCD為正方形   ∴AC⊥BD
∴BD⊥平面PAC又BD在平面BPD內(nèi),
∴平面PAC⊥平面BPD          .。。。。。。。。。。。。。。。。 6分
(Ⅱ)解法一:在平面BCP內(nèi)作BN⊥PC垂足為N,連DN,
∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;
∴∠BND為二面角B—PC—D的平面角,
在△BND中,BN=DN=,BD=
∴cos∠BND =。。。。。。。。。。。。。。。 12分
解法二:以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸建立空間坐標系如圖,
在平面BCP內(nèi)作BN⊥PC垂足為N連DN,

∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;
∴∠BND為二面角B—PC—D的平面角


                              10分
               12分
解法三:以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸建立如圖空間坐標系,作AM⊥PB于M、AN⊥PD于N,易證AM⊥平面PBC,AN⊥平面PDC,




∵二面角B—PC—D的平面角與∠MAN互補
∴二面角B—PC—D的余弦值為 …………………………. 12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,為圓的直徑,點、在圓上,且,矩形所在的平面和圓所在的平面互相垂直,且,.
(Ⅰ)求證:平面
(Ⅱ)設的中點為,求證:平面;
(Ⅲ)設平面將幾何體分割成的兩個錐體的體積分別為,求的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

20.(本小題滿分14分)

四棱錐中,側(cè)棱,底面是直角梯形,,且的中點.
(1)求異面直線所成的角;
(2)線段上是否存在一點,使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

棱柱的側(cè)棱
A.相交于一點B.平行但不相等
C.平行且相等D.可能平行也可能相交于一點

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在多面體ABCDE中,AE⊥面ABC,DB//AE,且AC=AB=BC=AE=1,BD=2,F(xiàn)為CD中點。
(1)求證:EF⊥平面BCD;
(2)求多面體ABCDE的體積;
(3)求平面ECD和平面ACB所成的銳二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)(理)如圖9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)問BC邊上是否存在Q點,使,說明理由.
(2)問當Q點惟一,且cos<>=時,求點P的位置.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本小題滿分14分)如圖,四棱錐的底面是正方形,側(cè)棱底面,,、分別是棱的中點.
(1)求證:;  (2) 求直線與平面所成的角的正切值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)右圖為一簡單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC//PD,且PD=AD=2CE=2 .
(1)若N為線段PB的中點,求證:EN⊥平面PDB;
(2)求該幾何體的體積;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分別是棱DD1、D1C1的中點,則直線OM
(  )
A.和AC、MN都垂直
B.垂直于AC,但不垂直于MN
C.垂直于MN,但不垂直于AC
D.與AC、MN都不垂直

查看答案和解析>>

同步練習冊答案