(本小題滿分分)
已知橢圓的中心在坐標原點,兩個焦點分別為、,一個頂點為.
(1)求橢圓的標準方程;
(2)對于軸上的點,橢圓上存在點,使得,求的取值范圍.

(1)
(2)

解:(1)由題意可得,,,
.                                          ………………………………2分
∴所求的橢圓的標準方程為:.              ………………………………4分
(2)設,則
.            ①                       ………………………………5分 
,,           ………………………………6分
可得,即
.    ②                  ………………………………7分 
由①、②消去整理得
.                        ………………………………9分 
,
.                     ………………………………11分
,
.                                    ………………………………13分
的取值范圍為.                            ………………………………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題


(1)求動點P的軌跡C的方程;
(2)設M、N是直線l上的兩個點,點E是點F關于原點的對稱點,若·=0,
求 | MN | 的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓方程為,拋物線方程為.過拋物線的焦點作軸的垂線,與拋物線在第一象限的交點為,拋物線在點處的切線經過橢圓的右焦點. 
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設為橢圓上的動點,由軸作垂線,垂足為,且直線上一點滿足,求點的軌跡方程,并說明軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(15分)如圖,設拋物線的準線與軸交于,焦點為;以為焦點,離心率的橢圓與拋物線軸上方的交點為,延長交拋物線于點,是拋物線上一動點,且M在之間運動.

(1)當時,求橢圓的方程;
(2)當的邊長恰好是三個連續(xù)的自然數(shù)時,求             面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設橢圓,右焦點F(c,0),方程的兩個根分別為x1,x2,則點P(x1,x2)在                                       (      )
A.圓B.圓
C.圓D.以上三種情況都有可能

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓中,以點M(-1,2)為中點的弦所在的直線斜率為     ▲     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

 已知函數(shù)的圖象在點處的切線恰好與垂直,則(Ⅰ)的值分別為  1,3  ;(Ⅱ)若上單調遞增,則m的取值范

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓 上一點到兩焦點的距離之和為,則       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的標準方程為,過點的雙曲線的實軸的兩端點恰好是橢圓的兩焦點,求雙曲線的標準方程.

查看答案和解析>>

同步練習冊答案