【題目】已知數(shù)列中,,且.

(1)求證:是等比數(shù)列,并求數(shù)列的通項公式;

(2)數(shù)列中是否存在不同的三項按照一定順序重新排列后,構(gòu)成等差數(shù)列?若存在,求滿足條件的項;若不存在,說明理由.

【答案】(1)證明見解析,;(2)不存在.

【解析】

1)推導(dǎo)出an+1+1=﹣3an+1),nN*a1+12,由此能證明{an+1}是以2為首項,﹣3為公比的等比數(shù)列,可求數(shù)列{an}通項公式.(2)假設(shè)am,an,ap構(gòu)成等差數(shù)列,mnp,則2anam+ap,利用(1)的通項公式進(jìn)行推導(dǎo)不滿足2anam+ap,從而數(shù)列{an}中不存在不同的三項按照一定順序重新排列后,構(gòu)成等差數(shù)列.

(1)因?yàn)?/span>,所以,因?yàn)?/span>

所以數(shù)列是以2為首項,以-3為公比的等比數(shù)列,

所以,即

(2)假設(shè)存在三項按一定順序重新排列后成等差.

①若,則

整理得,兩邊同除以,

可得,

等式右邊是-3的整數(shù)倍,左邊不是-3的整數(shù)倍,故等式不成立.

②若,則

整理得,兩邊同除以,

可得,

等式右邊是-3的整數(shù)倍,左邊不是-3的整數(shù)倍,故等式不成立.

③若,則,

整理得,兩邊同除以,

可得,

等式左邊是-3的整數(shù)倍,右邊不是-3的整數(shù)倍,故等式不成立;

綜上,不存在不同的三項符合題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園內(nèi)有一塊矩形綠地區(qū)域ABCD,已知AB=100米,BC=80米,以AD,BC為直徑的兩個半圓內(nèi)種植花草,其它區(qū)域種值苗木. 現(xiàn)決定在綠地區(qū)域內(nèi)修建由直路BN,MN和弧形路MD三部分組成的觀賞道路,其中直路MN與綠地區(qū)域邊界AB平行,直路為水泥路面,其工程造價為每米2a元,弧形路為鵝卵石路面,其工程造價為每米3a元,修建的總造價為W元. 設(shè).

(1)求W關(guān)于的函數(shù)關(guān)系式;

(2)如何修建道路,可使修建的總造價最少?并求最少總造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為

ab的值;

2若當(dāng)時,關(guān)于x的不等式恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次惡劣氣候的飛行航程中調(diào)查男女乘客在飛機(jī)上暈機(jī)的情況,共調(diào)查了89位乘客,其中男乘客有24人暈機(jī),31人不暈機(jī);女乘客有8人暈機(jī),26人不暈機(jī)

1)根據(jù)此材料數(shù)據(jù)完成如下的2×2列聯(lián)表;

暈機(jī)

不暈機(jī)

總計

男人

女人

總計

2)根據(jù)列聯(lián)表,利用下列公式和數(shù)據(jù)分析,你是否有90%的把握認(rèn)為在本次飛機(jī)飛行中暈機(jī)與性別有關(guān)?

3)其中8名暈機(jī)的女乘客中有5名是常坐飛機(jī)的乘客,另外3名是不常坐飛機(jī)的,從這8名乘客中任選3名,這3名乘客不都是常坐飛機(jī)的概率是多少?

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足,且數(shù)列的前項和為,已知數(shù)列的前項和為1,那么數(shù)列的首項________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。

(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在R上的函數(shù)的導(dǎo)函數(shù),且,則 的大小關(guān)系為( )

A. a<b<c B. b<a<c C. c<a<b D. c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有,,…,這5個球隊進(jìn)行單循環(huán)比賽(全部比賽過程中任何一隊都要分別與其他各隊比賽一場且只比賽一場).當(dāng)比賽進(jìn)行到一定階段時,統(tǒng)計,,這4個球隊已經(jīng)賽過的場數(shù)分別為:隊4場,隊3場, 隊2場,隊1場,則隊比賽過的場數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),定直線 ,動圓過點(diǎn),且與直線相切.

(Ⅰ)求動圓的圓心軌跡的方程;

(Ⅱ)過點(diǎn)的直線與曲線相交于, 兩點(diǎn),分別過點(diǎn), 作曲線的切線, ,兩條切線相交于點(diǎn),求外接圓面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案