(本小題滿分12分)
已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)若在區(qū)間是增函數(shù),求實數(shù)的取值范圍。
(1)當時,為偶函數(shù);當時,既不是奇函數(shù)也不是偶函數(shù).
(2)
解析試題分析:(1)當時,為偶函數(shù);當時,既不是奇函數(shù)也不是偶函數(shù).
(2)設(shè),
,
由得,
要使在區(qū)間是增函數(shù)只需,
即恒成立,則。
另解(導(dǎo)數(shù)法):,要使在區(qū)間是增函數(shù),只需當時,恒成立,即,則恒成立,
故當時,在區(qū)間是增函數(shù)。
考點:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;函數(shù)奇偶性的判斷.
點評: 此題考查函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,若大于0,則為增函數(shù);若小于0,則為減函數(shù).
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的定義域;
(2)判定函數(shù)的奇偶性,并加以證明;
(3)判定的單調(diào)性,并求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在點(1,f(1))處的切線方程為y = 2.
(I)求f(x)的解析式;
(II)設(shè)函數(shù)若對任意的,總存唯一實數(shù),使得,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)若曲線在點處與直線相切,求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù),,函數(shù)的圖象在點處的切線平行于軸.
(1)確定與的關(guān)系;
(2)試討論函數(shù)的單調(diào)性;
(3)證明:對任意,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù),曲線在點處的切線方程.
(1)求的解析式,并判斷函數(shù)的圖像是否為中心對稱圖形?若是,請求其對稱中心;否則說明理由。
(2)證明:曲線上任一點的切線與直線和直線所圍三角形的面積為定值,并求出此定值.
(3) 將函數(shù)的圖象向左平移一個單位后與拋物線(為非0常數(shù))的圖象有幾個交點?(說明理由)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若不等式在恒成立,求實數(shù)m的取值范圍.
(3)若對任意的,總存在,使不等式成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com