【題目】如圖,三棱柱中,平面,,,,以,為鄰邊作平行四邊形,連接和.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)線段上是否存在點(diǎn),使平面與平面垂直?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.
【答案】(1)平面;(2);(3)線段上不存在點(diǎn),使平面與平面垂直.
【解析】
試題(1)要證明線面平行,需要在平面中找出一條直線平行于.連結(jié),三棱柱中且,由平行四邊形得且,
且,四邊形為平行四邊形,, 平,平面, 平面.(2)建立空間直角坐標(biāo)系,設(shè)平面的法向量為,利用即,令,則, ,,直線與平面所成角的正弦值為. (3)設(shè),,則,設(shè)平面的法向量為,利用垂直關(guān)系, 即,令,則,,所以,因?yàn)槠矫?/span>的法向量為,假設(shè)平面與平面垂直,則,解得,
線段上不存在點(diǎn),使平面與平面垂直.
試題解析:(1)連結(jié),三棱柱中且,
由平行四邊形得且
且1分
四邊形為平行四邊形,2分
平,平面3分
平面4分
(2)由,四邊形為平行四邊形得,底面
如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,則,,
,, 1分
,,
設(shè)平面的法向量為,則
即,令,則,
3分
直線與平面所成角的正弦值為. 5分
(3)設(shè),,則1分
設(shè)平面的法向量為,則
, 即
令,則,,所以3分
由(2)知:平面的法向量為
假設(shè)平面與平面垂直,則,解得,
線段上不存在點(diǎn),使平面與平面垂直.
5分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=asin2x+bcos2x(a,b∈R,ab≠0),若f(x)對(duì)一切x∈R恒成立,給出以下結(jié)論:
①;
②;
③f(x)的單調(diào)遞增區(qū)間是;
④函數(shù)y=f(x)既不是奇函數(shù)也不是偶函數(shù);
⑤存在經(jīng)過(guò)點(diǎn)(a,b)的直線與函數(shù)f(x)的圖象不相交,其中正確結(jié)論為_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該作完善了珠算口訣,確立了算盤(pán)用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買(mǎi)酒。遇店加一倍,見(jiàn)花喝一斗,三遇店和花,喝光壺中酒。借問(wèn)此壺中,原有多少酒?”,如圖為該問(wèn)題的程序框圖,若輸出的值為0,則開(kāi)始輸入的值為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,左頂點(diǎn)為
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作兩條相互垂直的直線分別與橢圓交于(不同于點(diǎn)的)兩點(diǎn).試判斷直線與軸的交點(diǎn)是否為定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)求函數(shù)的圖像在點(diǎn)處的切線方程.
(Ⅱ)若且對(duì)任意恒成立,求的最大值;
(Ⅲ)當(dāng)時(shí),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(卷號(hào))2209028400021504
(題號(hào))2209073114537984
(題文)
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;
(Ⅱ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅲ)對(duì)于曲線上的不同兩點(diǎn)、,如果存在曲線上的點(diǎn),且,使得曲線在點(diǎn)處的切線,則稱直線存在“伴隨切線”. 特別地,當(dāng)時(shí),又稱直線存在“中值伴隨切線”.試問(wèn):在函數(shù)的圖象上是否存在兩點(diǎn)、,使得直線存在“中值伴隨切線”?若存在,求出、的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,底面是菱形,,.
(Ⅰ)求證:直線平面;
(Ⅱ)求直線與平面所成角的正切值;
(Ⅲ)設(shè)點(diǎn)在線段上,且二面角的余弦值為,求點(diǎn)到底面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線,點(diǎn) 在拋物線上,過(guò)焦點(diǎn)且斜率為的直線與相交于兩點(diǎn),且兩點(diǎn)在準(zhǔn)線上的投影分別為兩點(diǎn),則三角形的面__________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】建立坐標(biāo)系用斜二測(cè)畫(huà)法畫(huà)正△ABC的直觀圖,其中直觀圖不是全等三角形的一組是( )
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com