橢圓的焦距為6,且經(jīng)過點P(4,
125
),求焦點在x軸上橢圓的標(biāo)準(zhǔn)方程.
分析:設(shè)橢圓方程為
x2
a2
+
y2
b2
=1
(a>b>0),根據(jù)題意建立關(guān)于a、b的方程組,解出a、b之值,即可得到所求橢圓的方程.
解答:解:設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1
(a>b>0),
∵橢圓的焦距為6,且經(jīng)過點P(4,
12
5
),
2
a2-b2
=6
42
a2
+
(
12
5
)
2
b2
=1
,解之得
a =5
b=4
(負(fù)值舍去).
因此,橢圓的方程為
x2
25
+
y2
16
=1
點評:本題給出橢圓的焦距和經(jīng)過的定點坐標(biāo),求橢圓的方程.考查了橢圓的定義與標(biāo)準(zhǔn)方程等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點變換到這一平面上的一點.

(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點的坐標(biāo);

(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標(biāo);

(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

定義變換可把平面直角坐標(biāo)系上的點變換到這一平面上的點.特別地,若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.

(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時,其兩個焦點、經(jīng)變換公式變換后得到的點的坐標(biāo);

(2)當(dāng)時,求(1)中的橢圓在變換下的所有不動點的坐標(biāo);

(3)試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的雙曲線在變換

,)下的不動點的存在情況和個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

定義變換可把平面直角坐標(biāo)系上的點變換到這一平面上的點.特別地,若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.

(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時,其兩個焦點、經(jīng)變換公式變換后得到的點的坐標(biāo);

(2)當(dāng)時,求(1)中的橢圓在變換下的所有不動點的坐標(biāo);

(3)試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的雙曲線在變換

)下的不動點的存在情況和個數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點變換到這一平面上的一點.

(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點的坐標(biāo);

(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標(biāo);

(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).

 

查看答案和解析>>

同步練習(xí)冊答案