【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動支付(又稱手機支付)越來越普通,某學(xué)校興趣小組為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有個人.把這個人按照年齡分成5組:第1組,第2組,第3組,第4組,第5組,然后繪制成如圖所示的頻率分布直方圖.其中,第一組的頻數(shù)為20.

(1)求的值,并根據(jù)頻率分布直方圖估計這組數(shù)據(jù)的眾數(shù);

(2)從第1,3,4組中用分層抽樣的方法抽取6人,求第1,3,4組抽取的人數(shù);

(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.

【答案】(1),,30;(2)第1組2人,第2組3人,第3組1人;(3).

【解析】試題分析:1)直接利用頻率分布直方圖,結(jié)合累積頻率為1,頻數(shù)=頻率×樣本容量,可分別求出的值,最高點的中點橫坐標即為眾數(shù);
2)直接利用抽樣比即可求第1,2,3組每組各抽取人數(shù).
3)列出(2)抽取的6人中隨機抽取2人是所有情況,求出這2人來自同一個組的數(shù)目,即可求解概率.

試題解析:

(1)由題意可知,,

,

解得

由頻率分布直方圖可估計這組數(shù)據(jù)的眾數(shù)為30;

(2)第1,3,4組頻率之比為0.020:0.030:0.010=2:3:1

則從第1組抽取的人數(shù)為,

從第3組抽取的人數(shù)為,

從第4組抽取的人數(shù)為

(3)設(shè)第1組抽取的2人為,第3組抽取的3人為,第4組抽取的1人為,則從這6人中隨機抽取2人有如下種情形:

,共有15個基本事件.

其中符合“抽取的2人來自同一個組”的基本事件有共4個基本事件,

所以抽取的2人來自同一個組的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一個四位數(shù)的各位數(shù)字相加和為,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問用數(shù)字組成的無重復(fù)數(shù)字且大于的“完美四位數(shù)”有( )個

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓柱底面半徑為1,高為,ABCD是圓柱的一個軸截面,動點M從點B出發(fā)沿著圓柱的側(cè)面到達點D,其距離最短時在側(cè)面留下的曲線如圖所示.將軸截面ABCD繞著軸逆時針旋轉(zhuǎn)后,邊與曲線相交于點P

(Ⅰ)求曲線長度;

(Ⅱ)當時,求點到平面APB的距離;

(Ⅲ)證明:不存在,使得二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,以Ox軸為始邊作兩個銳角αβ,它們的終邊分別與單位圓相交于A,B兩點,已知AB的橫坐標分別為, .求:

1tan(αβ)的值;

2α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個不同的極值點.

(1)求的取值范圍.

(2)設(shè)的兩個極值點為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 中, 的中點, ,將沿折起,使點到達點.

(1)求證: 平面;

(2)當三棱錐的體積最大時,試問在線段上是否存在一點,使與平面所成的角的正弦值為?若存在,求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用獨立性檢驗的方法調(diào)查大學(xué)生的性別與愛好某項運動是否有關(guān),通過隨機詢問110名不同的大學(xué)生是否愛好某項運動,利用列聯(lián)表,由計算可得

PK2>k

010

005

0025

0010

0005

0001

k

2706

3841

5024

6635

7879

10828

參照附表,得到的正確結(jié)論是( )

A.有995%以上的把握認為愛好該項運動與性別無關(guān)

B.有995%以上的把握認為愛好該項運動與性別有關(guān)

C.在犯錯誤的概率不超過005%的前提下,認為愛好該項運動與性別有關(guān)

D.在犯錯誤的概率不超過005%的前提下,認為愛好該項運動與性別無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項等比數(shù)列{an}滿足log2a1+log2a2+…+log2a2009=2009,則log2(a1+a2009)的最小值為

查看答案和解析>>

同步練習(xí)冊答案