將標號為1,2,3,4,5,6的6張卡片放入3個不同的信封中,若每個信封放2張,其中標號為1,2的卡片放入同一信封,則不同的方法共有


  1. A.
    12種
  2. B.
    18種
  3. C.
    36種
  4. D.
    54種
B
分析:本題是一個分步計數(shù)問題,首先從3個信封中選一個放1,2有3種不同的選法,再從剩下的4個數(shù)中選兩個放一個信封有C42,余下放入最后一個信封,根據(jù)分步計數(shù)原理得到結果.
解答:由題意知,本題是一個分步計數(shù)問題,
∵先從3個信封中選一個放1,2有3種不同的選法,
再從剩下的4個數(shù)中選兩個放一個信封有C42=6,
余下放入最后一個信封,
∴共有3C42=18
故選B.
點評:本題考查分步計數(shù)原理,考查平均分組問題,是一個易錯題,解題的關鍵是注意到第二步從剩下的4個數(shù)中選兩個放到一個信封中,這里包含兩個步驟,先平均分組,再排列.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

4、將標號為1,2,3,4,5,6的6張卡片放入3個不同的信封中,若每個信封放2張,其中標號為1,2的卡片放入同一信封,則不同的方法共有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

6、將標號為1,2,3,4,5,6的6張卡片放入3個不同的信封中.若每個信封放2張,其中標號為1,2的卡片放入同一信封,則不同的方法共有
18
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

12、將標號為1,2,3,4,…,9的9個球放入標號為1,2,3,4,…,9的9個盒子中去,每個盒內放入一個小球,則恰好有4個小球的標號與其所在的盒子的標號不一致的方法總數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將標號為1,2,3,4,5,6的6個小球放入3個不同的盒子中.若每個盒子放2個,其中標號為1,2的小球放入同一盒子中,則不同的方法共有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)將標號為1,2,3,4,5,6的6張卡片放入3個不同的信封中,若每個信封放2張,則標號為1,2的卡片放入同一個信封的概率為
 

查看答案和解析>>

同步練習冊答案