【題目】某居民小區(qū)內(nèi)建有一塊矩形草坪ABCD,AB=50米,,為了便于居民平時(shí)休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內(nèi)鋪設(shè)三條小路OE,EF和OF,考慮到小區(qū)整體規(guī)劃,要求O是AB的中點(diǎn),點(diǎn)E在邊BC上,點(diǎn)F在邊AD上,且,如圖所示.
(Ⅰ)設(shè),試將的周長(zhǎng)l表示成的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;
(Ⅱ)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為400元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.
【答案】(Ⅰ)見解析;(Ⅱ)見解析.
【解析】
(Ⅰ)根據(jù)三角函數(shù)定義及勾股定理,即可表示出EF長(zhǎng)度,進(jìn)而用α表示出周長(zhǎng)。根據(jù)點(diǎn)E、F的極限位置,判斷出角的大小范圍得到定義域。
(Ⅱ)利用三角函數(shù)換元,將周長(zhǎng)轉(zhuǎn)化為關(guān)于t的函數(shù),結(jié)合角α的范圍求得t的范圍,進(jìn)而得到l的范圍,即為費(fèi)用最低時(shí)的長(zhǎng)度。
(Ⅰ)∵在中,,∴
在中,,∴
又,
∴即.
當(dāng)點(diǎn)F在點(diǎn)D時(shí),這時(shí)角最小,求得此時(shí);
點(diǎn)E在C點(diǎn)時(shí),這時(shí)角最大,求得此時(shí).故此函數(shù)的定義域?yàn)?/span>
(Ⅱ)由題意知,要求鋪路總費(fèi)用最低,只要求的周長(zhǎng)l最小值即可.
由(Ⅰ)得,,
設(shè),則,∴
由,得,∴,
從而,當(dāng),即BE=25時(shí),
所以當(dāng) 米時(shí),鋪路總費(fèi)用最低,最低總費(fèi)用為元
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資人欲將5百萬元獎(jiǎng)金投入甲、乙兩種理財(cái)產(chǎn)品,根據(jù)銀行預(yù)測(cè),甲、乙兩種理財(cái)產(chǎn)品的收益與投入獎(jiǎng)金的關(guān)系式分別為,其中為常數(shù)且.設(shè)對(duì)乙種產(chǎn)品投入獎(jiǎng)金百萬元,其中.
(1)當(dāng)時(shí),如何進(jìn)行投資才能使得總收益最大;(總收益)
(2)銀行為了吸儲(chǔ),考慮到投資人的收益,無論投資人獎(jiǎng)金如何分配,要使得總收益不低于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣|x|+2a﹣1(a為實(shí)常數(shù)).
(1)若a=1,求f(x)=3的解;
(2)求f(x)在區(qū)間[1,2]的最小值為g(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)滿足
(1)求的值;
(2)判斷函數(shù)的奇偶性,并說明理由;
(3)若b=1,且函數(shù)在上是單調(diào)增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的定義域?yàn)镽,且滿足
(1)f(1)=3
(2)對(duì)于任意的,總有
(3)對(duì)于任意的
(I)求f(0)及f(-1)的值
(II)求證:函數(shù)y=f(x)-1為奇函數(shù)
(III)若,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).
(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求直線AB與平面PBC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實(shí)數(shù)a的取值范圍為( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《張丘建算經(jīng)》是公元5世紀(jì)中國古代內(nèi)容豐富的數(shù)學(xué)著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”其意思為“有個(gè)女子織布,每天比前一天多織相同量的布,第一天織五尺,一個(gè)月(按30天計(jì))共織390尺.問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布的布約有( )
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com