已知M是橢圓
x2
9
+
y2
5
=1
上一點,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,I是△MF1F2的內(nèi)心,延長MI交F1F2于N,則 
|MI|
|NI|
等于
3
2
3
2
分析:由于三角形的內(nèi)心是三個內(nèi)角的平分線的交點,根據(jù)三角形內(nèi)角平分線性質(zhì)定理把所求的比值轉(zhuǎn)化為三角形邊長之間的比值關(guān)系來求解.
解答:解:如圖,連接IF1,IF2.在△MF1I中,F(xiàn)1I是∠MF1N的角平分線,
根據(jù)三角形內(nèi)角平分線性質(zhì)定理,
|MI|
|NI|
=
|MF1|
|F1N|
,同理可得
|MI|
|NI|
=
|MF 2|
|F 2N|
,
|MI|
|NI|
=
|MF1|
|F1N|
=
|MF 2|
|F 2N|
;
根據(jù)等比定理
|MI|
|NI|
=
|MF 1|+|MF 2|
|F1N|+|F2N|
=
2a
2c
=
2×3
9-5
=
3
2

故答案為:
3
2
點評:本題主要考查圓錐曲線的定義的應(yīng)用,試題在平面幾何中的三角形內(nèi)角平分線性質(zhì)定理、初中代數(shù)中的等比定理和圓錐曲線的定義之間進行了充分的交匯,在解決涉及到圓錐曲線上的點與焦點之間的關(guān)系的問題中,圓錐曲線的定義往往是解題的突破口.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x=
2
m
y2=nx(n<0)(m<0)與橢圓
x2
9
+
y2
n
=1有一個相同的焦點,則動點(m,n)的軌跡是(  )
A、橢圓的一部分
B、雙曲線的一部分
C、拋物線的一部分
D、直線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩個焦點為F1(-
5
,0)
,F2(
5
,0)
,M是橢圓上一點,若
MF1
MF2
=0
,|
MF1
|•|
MF2
|=8
,則該橢圓的方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
9
+
y2
5
=1的左右焦點為F1、F2,P為橢圓上一點,O是坐標原點,M是PF1的中點,若|PF1|=4,則|OM|=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的兩個焦點為F1(-
5
,0)
F2(
5
,0)
,M是橢圓上一點,若
MF1
MF2
=0
,|
MF1
|•|
MF2
|=8
,則該橢圓的方程是( 。
A.
x2
7
+
y2
2
=1
B.
x2
2
+
y2
7
=1
C.
x2
9
+
y2
4
=1
D.
x2
4
+
y2
9
=1

查看答案和解析>>

同步練習冊答案