【題目】設(shè)橢圓的左、右焦點分別是,下頂點為,線段的中點為(為坐標(biāo)原點),如圖,若拋物線與軸的交點為,且經(jīng)過點.
(1)求橢圓的方程;
(2)設(shè),為拋物線上的一動點,過點作拋物線的切線交橢圓于點、兩點,求面積的最大值.
【答案】(1);(2).
【解析】
試題分析:(1)由題意可知,得,再由,,得,即可求出橢圓的,即可求得橢圓的方程;(2)設(shè),表示過點的拋物線想的切線方程,與橢圓方程聯(lián)立,利用弦長公式表示傳線段的長度,再求出點到直線的距離為,表示傳的面積,由于其是參數(shù)的函數(shù),利用函數(shù)的知識求出其最大值,即可得到面積的最大值.
試題解析:⑴由題意可知,則,故.
令得即,則,,故.
所以,于是橢圓的方程為
⑵設(shè),由于知直線的方程為:.即.
代入橢圓方程整理得:,
,
,,
故.
設(shè)點到直線的距離為,則
,所以,的面積
.
當(dāng)時取到“=”,經(jīng)檢驗此時,滿足題意.
綜上可右,的面積的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進(jìn)行視力調(diào)查.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的6所學(xué)校中隨機抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,
①列出所有可能的抽取結(jié)果;
②求抽取的2所學(xué)校均為小學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十一國慶節(jié)期間,某商場舉行購物抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得3分;方案乙的中獎率為,中獎可以獲得2分;未中獎則不得分,每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,抽獎結(jié)束后憑分?jǐn)?shù)兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,求的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎,分別求兩種方案下小明、小紅累計得分的分布列,并指出為了累計得分較大,兩種方案下他們選擇何種方案較好,并給出理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)若是函數(shù)的極值點,求的值;
(Ⅱ)若在區(qū)間上單調(diào)遞增,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)令,是否存在實數(shù),當(dāng)(是自然常數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由.
(3)當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,向量,,且與共線.
(1)求數(shù)列的通項公式;
(2)對任意,將數(shù)列中落入?yún)^(qū)間內(nèi)的項的個數(shù)記為,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知曲線,將曲線上的點向左平移一個單位,然后縱坐標(biāo)不變,橫坐標(biāo)軸伸長到原來的2倍,得到曲線,又已知直線(是參數(shù)),且直線與曲線交于兩點.
(I)求曲線的直角坐標(biāo)方程,并說明它是什么曲線;
(II)設(shè)定點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國的高鐵技術(shù)發(fā)展迅速,鐵道部門計劃在兩城市之間開通高速列車,假設(shè)列車在試運行期間,每天在兩個時間段內(nèi)各發(fā)一趟由城開往城的列車(兩車發(fā)車情況互不影響),城發(fā)車時間及概率如下表所示:
發(fā)車 時間 | ||||||
概率 |
若甲、乙兩位旅客打算從城到城,他們到達(dá)火車站的時間分別是周六的和周日的(只考慮候車時間,不考慮其他因素).
(1)設(shè)乙候車所需時間為隨機變量(單位:分鐘),求的分布列和數(shù)學(xué)期望;
(2)求甲、乙兩人候車時間相等的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com