雙曲線的離心率為2,坐標原點到直線AB的距離為,其中A,B.
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在軸正半軸上的端點,過B1作直線與雙曲線交于兩點,求時,直線的方程.
科目:高中數(shù)學 來源: 題型:解答題
(12分)拋物線的焦點為,過點的直線交拋物線于,兩點.
①為坐標原點,求證:;
②設點在線段上運動,原點關于點的對稱點為,求四邊形面積的最小值..
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)在平面直角坐標系O中,直線與拋物線=2相交于A、B兩點.
(Ⅰ)求證:命題“如果直線過點T(3,0),那么=3”是真命題;
(Ⅱ)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知頂點在坐標原點,焦點在軸正半軸的拋物線上有一點,點到拋物線焦點的距離為1.(1)求該拋物線的方程;(2)設為拋物線上的一個定點,過作拋物線的兩條互相垂直的弦,,求證:恒過定點.(3)直線與拋物線交于,兩點,在拋物線上是否存在點,使得△為以為斜邊的直角三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分) 如圖,已知拋物線與坐標軸分別交于A、B、C三點,過坐標原點O的直線與拋物線交于M、N兩點.分別過點C、D作平行于軸的直線、.(1)求拋物線對應的二次函數(shù)的解析式;(2)求證:以ON為直徑的圓與直線相切;(3)求線段MN的長(用表示),并證明M、N兩點到直線的距離之和等于線段MN的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系上取兩個定點,再取兩個動點,且.
(Ⅰ)求直線與交點的軌跡的方程;
(Ⅱ)已知點()是軌跡上的定點,是軌跡上的兩個動點,如果直線的斜率與直線的斜率滿足,試探究直線的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,曲線是以原點O為中心、為焦點的橢圓的一部分,曲線是以O為頂點、為焦點的拋物線的一部分,A是曲線和的交點且
為鈍角.
(1)求曲線和的方程;
(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問是否為定值?若是求出定值;若不是說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com