【題目】如圖,正四棱錐中, 是正方形, 是正方形的中心, 底面, 是的中點(diǎn).
(I)證明: 平面;
(II)證明:平面平面;
(III)已知: ,求點(diǎn)到面的距離.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ)證明見(jiàn)解析;(Ⅲ)1.
【解析】試題分析:
(Ⅰ)連結(jié)EO,由三角形中位線(xiàn)的性質(zhì)可知OE∥AP,利用線(xiàn)面平行的判定定理可得PA∥平面BDE.
(Ⅱ)利用線(xiàn)面垂直的判定定理可得POBD,利用正方形的性質(zhì)可得ACBD,結(jié)合線(xiàn)面垂直的判定定理可得BD平面PAC,則平面PAC平面BDE.
(Ⅲ)設(shè)點(diǎn)C到面BDE的距離為,由三棱錐的性質(zhì)可得,結(jié)合棱錐的體積公式可得關(guān)于高的方程,解方程可得點(diǎn)C到面BDE的距離為1.
試題解析:
(I)連結(jié)EO,在△BDE中∵O是AC的中點(diǎn),E是PC的中點(diǎn),
∴OE∥AP,又∵OE平面BDE,PA平面BDE,
∴PA∥平面BDE.
(II)∵PO底面ABCD,BD面ABCD,
∴POBD,
又∵ABCD是正方形, ∴ACBD, 且ACPO=O
∴BD平面PAC,
而BD平面BDE,∴平面PAC平面BDE.
(III)設(shè)點(diǎn)C到面BDE的距離為,
由已知得
正四棱錐P-ABCD中,AB=PA=2 ,由題意得,PO=,EO= =1,
∴,
∴=1,即點(diǎn)C到面BDE的距離為1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)正整數(shù)n,記In={1,2,3,...,n},Pn={|m∈In,k∈In}.
(1)求集合P7中元素的個(gè)數(shù);
(2)若Pn的子集A中任意兩個(gè)元素之和不是整數(shù)的平方,則稱(chēng)A為“稀疏集”.求n的最大值,使Pn能分成兩個(gè)不相交的稀疏集的并集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ,設(shè)(其中表示中的較小者).
(1)在坐標(biāo)系中畫(huà)出函數(shù)的圖像;
(2)設(shè)函數(shù)的最大值為,試判斷與1的大小關(guān)系,并說(shuō)明理由.
(參考數(shù)據(jù): , , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中, , , , 為線(xiàn)段的中點(diǎn),將沿折起,使平面平面,得到幾何體.
(1)若分別為線(xiàn)段的中點(diǎn),求證: 平面;
(2)求證: 平面;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)為5元,銷(xiāo)售單價(jià)與日均銷(xiāo)售量的關(guān)系如圖所示.
銷(xiāo)售單價(jià)/元 | … | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | … |
日均銷(xiāo)售量/桶 | … | 480 | 460 | 440 | 420 | 400 | 380 | … |
請(qǐng)根據(jù)以上數(shù)據(jù)作出分析,這個(gè)經(jīng)營(yíng)部怎樣定價(jià)才能獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解適齡公務(wù)員對(duì)開(kāi)放生育二胎政策的態(tài)度,某部門(mén)隨機(jī)調(diào)查了90位三十歲到四十歲的公務(wù)員,得到如下列聯(lián)表,因不慎丟失部分?jǐn)?shù)據(jù).
(1)完成表格數(shù)據(jù),判斷是否有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”并說(shuō)明理由;
(2)已知15位有意愿生二胎的女性公務(wù)員中有兩位來(lái)自省婦聯(lián),該部門(mén)打算從這15位有意愿生二胎的女性公務(wù)員中隨機(jī)邀請(qǐng)兩位來(lái)參加座談,設(shè)邀請(qǐng)的2人中來(lái)自省婦聯(lián)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
男性公務(wù)員 | 女性公務(wù)員 | 總計(jì) | |
有意愿生二胎 | 15 | 45 | |
無(wú)意愿生二胎 | 25 | ||
總計(jì) |
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
附: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從參加高二年級(jí)期末考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后得到如下頻率分布表.根據(jù)相關(guān)信息回答下列問(wèn)題:
(1)求a,b的值,并畫(huà)出頻率分布直方圖;
(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)本次考試的平均分;
(3)用分層抽樣的方法在分?jǐn)?shù)在[60,80)內(nèi)學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人的分?jǐn)?shù)在[70,80)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù)
(Ⅰ)求值;
(Ⅱ)判斷并證明該函數(shù)在定義域上的單調(diào)性;
(Ⅲ)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
(Ⅳ)設(shè)關(guān)于的函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com