【題目】已知A、B、C為△ABC的三個(gè)內(nèi)角,且其對(duì)邊分別為a、b、c,若cosBcosC﹣sinBsinC=
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.

【答案】
(1)解:在△ABC中,∵cosBcosC﹣sinBsinC= ,

∴cos(B+C)= ,

又∵0<B+C<π,

∴B+C= ,

∵A+B+C=π,

∴A=


(2)解:由余弦定理a2=b2+c2﹣2bccosA,

得(2 2=(b+c)2﹣2bc﹣2bccos

把b+c=4代入得:12=16﹣2bc+bc,

整理得:bc=4,

則△ABC的面積S= bcsinA= ×4× =


【解析】(1)已知等式左邊利用兩角和與差的余弦函數(shù)公式化簡(jiǎn),求出cos(B+C)的值,確定出B+C的度數(shù),即可求出A的度數(shù);(2)利用余弦定理列出關(guān)系式,再利用完全平方公式變形,將a與b+c的值代入求出bc的值,再由sinA的值,利用三角形面積公式即可求出三角形ABC面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=2x 的零點(diǎn)個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)志愿者協(xié)會(huì)有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來(lái)自數(shù)學(xué)學(xué)院,其余7名同學(xué)來(lái)自物理、化學(xué)等其他互不相同的七個(gè)學(xué)院,現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(dòng)(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來(lái)自互不相同學(xué)院的概率;
(2)設(shè)X為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的極值;

2)若時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的值;

3,對(duì)于區(qū)間上的任意兩個(gè)不相等的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的極值;

2)若時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的值;

3,對(duì)于區(qū)間上的任意兩個(gè)不相等的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)沙市物價(jià)監(jiān)督部門為調(diào)研某公司新開(kāi)發(fā)上市的一種產(chǎn)品銷售價(jià)格的合理性,對(duì)某公司的該產(chǎn)品的銷量與價(jià)格進(jìn)行了統(tǒng)計(jì)分析,得到如下數(shù)據(jù)和散點(diǎn)圖:

定價(jià)

10

20

30

40

50

60

年銷量

1150

643

424

262

165

86

14.1

12.9

12.1

11.1

10.2

8.9

(參考數(shù)據(jù): ,

(1)根據(jù)散點(diǎn)圖判斷, 哪一對(duì)具有的線性相關(guān)性較強(qiáng)(給出判斷即可,不必說(shuō)明理由)?

(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).

(3)定價(jià)為多少元/ 時(shí),年銷售額的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)求方程f(x)=0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體的底面是邊長(zhǎng)為2的正方形, 底面 ,且

(Ⅰ)記線段的中點(diǎn)為,在平面內(nèi)過(guò)點(diǎn)作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.

(Ⅱ)求直線與平面所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在圓 上,而軸上的投影,且點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)若是曲線上兩點(diǎn),且 為坐標(biāo)原點(diǎn),求的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案