【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現(xiàn)對100名五年級學生進行了問卷調查,得到如下2×2列聯(lián)表,平均每天喝500ml以上為常喝,體重超過50kg為肥胖.

不常喝

常喝

合計

肥胖

x

y

50

不肥胖

40

10

50

合計

A

B

100

現(xiàn)從這100名兒童中隨機抽取1人,抽到不常喝碳酸飲料的學生的概率為
(1)求2×2列聯(lián)表中的數(shù)據(jù)x,y,A,B的值;
(2)根據(jù)列聯(lián)表中的數(shù)據(jù)繪制肥胖率的條形統(tǒng)計圖,并判斷常喝碳酸飲料是否影響肥胖?
(3)是否有99.9%的把握認為肥胖與常喝碳酸飲料有關?說明你的理由. 附:參考公式:K2= ,其中n=a+b+c+d.
臨界值表:

P(K2≥k)

0.05

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

【答案】
(1)解:根據(jù)題意,不常喝碳酸飲料的學生為A=100× =60,∴x=60﹣40=20,y=50﹣20=30,B=30+10=40
(2)解:根據(jù)列聯(lián)表中的數(shù)據(jù)得常喝飲料的肥胖率為 =0.75,

不常喝飲料的肥胖率為 =0.33,

繪制肥胖率的條形統(tǒng)計圖如圖所示;

根據(jù)統(tǒng)計圖判斷常喝碳酸飲料會增加肥胖的可能


(3)解:由已知數(shù)據(jù)可求得:K2= ≈15.629>7.879,

因此有99.5%的把握認為肥胖與常喝碳酸飲料有關.


【解析】(1)根據(jù)題意,計算不常喝碳酸飲料的學生A,以及對應表中x、y和B的值;(2)根據(jù)列聯(lián)表中的數(shù)據(jù)計算常喝飲料與不常喝飲料的肥胖率,繪圖即可;根據(jù)統(tǒng)計圖即可得出概率結論;(3)計算觀測值K2 , 對照數(shù)表即可得出結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題一定正確的是(
A.在等差數(shù)列{an}中,若ap+aq=ar+aδ , 則p+q=r+δ
B.已知數(shù)列{an}的前n項和為Sn , 若{an}是等比數(shù)列,則Sk , S2k﹣Sk , S3k﹣S2k也是等比數(shù)列
C.在數(shù)列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數(shù)列
D.在數(shù)列{an}中,若ap?aq=a ,則ap , ar , aq成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x≤﹣1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中φ∈(0, ),則函數(shù)g(x)=cos(2x﹣φ)的圖象(
A.關于點( ,0)對稱
B.可由函數(shù)f(x)的圖象向右平移 個單位得到
C.可由函數(shù)f(x)的圖象向左平移 個單位得到
D.可由函數(shù)f(x)的圖象向左平移 個單位得到

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+alnx
(1)當a=﹣1時,求函數(shù)的單調區(qū)間和極值
(2)若f(x)在[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x+3|﹣m+1,m>0,f(x﹣3)≥0的解集為(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,f(x)≥|2x﹣1|﹣t2+ t成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=﹣sin(ωx+φ)(ω>0,φ∈(﹣ , ))的一條對稱軸為x= ,一個對稱中心為( ,0),在區(qū)間[0, ]上單調.
(1)求ω,φ的值;
(2)用描點法作出y=sin(ωx+φ)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式|3x+2|+|3x﹣1|﹣t≥0的解集為R,記實數(shù)t的最大值為a.
(1)求a;
(2)若正實數(shù)m,n滿足4m+5n=a,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: 的一個焦點為F(3,0),其左頂點A在圓O:x2+y2=12上.
(1)求橢圓C的方程;
(2)直線l:x=my+3(m≠0)交橢圓C于M,N兩點,設點N關于x軸的對稱點為N1(點N1與點M不重合),且直線N1M與x軸的交于點P,試問△PMN的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案