已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,證明當(dāng)時(shí),函數(shù)的圖象恒在函數(shù)圖象的上方.

(Ⅰ)單調(diào)遞減區(qū)間是。單調(diào)遞增區(qū)間是;(Ⅱ)參考解析.

解析試題分析:(Ⅰ)本小題含對(duì)數(shù)式的函數(shù),首先確定定義域.通過(guò)求導(dǎo)就可知道函數(shù)的單調(diào)區(qū)間.本題的易錯(cuò)易漏點(diǎn)就是定義域的范圍.(Ⅱ)函數(shù)的圖象恒在函數(shù)圖象的上方等價(jià)于兩個(gè)函數(shù)的對(duì)減后的值恒大于零(設(shè)在上方的減去在下方的).所以轉(zhuǎn)化成在x>1上的恒大于零的問(wèn)題.通過(guò)構(gòu)造新的函數(shù),對(duì)其求導(dǎo),得到函數(shù)在x>1上為遞增函數(shù).又f(1)>0.所以函數(shù)恒大于零.即函數(shù)的圖象恒在函數(shù)圖象的上方成立.
試題解析:解:(Ⅰ)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/61/4/umsj71.png" style="vertical-align:middle;" />,
求得: 2分
,則 3分
當(dāng)變化時(shí),的變化情況如下表:



1


-
0
+


極小值

的單調(diào)遞減區(qū)間是。單調(diào)遞增區(qū)間是 6分
(Ⅱ)令
  8分

上單調(diào)遞增 10分


∴當(dāng)時(shí),的圖象恒在圖象的上方. 12分
考點(diǎn):1.含對(duì)數(shù)的函數(shù)的求導(dǎo)數(shù).2.應(yīng)用函數(shù)的單調(diào)性解決一些問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)預(yù)計(jì)2014年從1月起前個(gè)月顧客對(duì)某種商品的需求總量(單位:件)
(1)寫(xiě)出第個(gè)月的需求量的表達(dá)式;
(2)若第個(gè)月的銷售量(單位:件),每件利潤(rùn)(單位:元),求該商場(chǎng)銷售該商品,預(yù)計(jì)第幾個(gè)月的月利潤(rùn)達(dá)到最大值?月利潤(rùn)的最大值是多少?(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖象與直線相切于點(diǎn).
(1)求實(shí)數(shù)的值; (2)求的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),曲線在點(diǎn)處切線方程為.
(1)求的值;
(2)討論的單調(diào)性,并求的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)若函數(shù)存在極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),令(),()為曲線y=上的兩動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),能否使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的最大值為0,其中
(1)求的值;
(2)若對(duì)任意,有成立,求實(shí)數(shù)的最大值;
(3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),恒過(guò)定點(diǎn)
(1)求實(shí)數(shù)
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,直接寫(xiě)出的解析式;
(3)對(duì)于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)如果存在零點(diǎn),求的取值范圍
(2)是否存在常數(shù),使為奇函數(shù)?如果存在,求的值,如果不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),其中a為正實(shí)數(shù).
(l)若x=0是函數(shù)的極值點(diǎn),討論函數(shù)的單調(diào)性;
(2)若上無(wú)最小值,且上是單調(diào)增函數(shù),求a的取值范
圍;并由此判斷曲線與曲線交點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案