如圖,四面體中,分別是、的中點(diǎn),

(Ⅰ)求證:平面;
(Ⅱ)求異面直線所成角余弦值的大小;
(Ⅲ)求點(diǎn)到平面的距離.
(Ⅰ)略;(Ⅱ);(Ⅲ)

試題分析:(Ⅰ)中主要利用線線垂直可證線面垂直;(Ⅱ)中通過(guò)作平行線轉(zhuǎn)化到三角形內(nèi)解角;當(dāng)然也可建系利用空間向量來(lái)解;(Ⅲ)中利用等體積法可求,亦可用空間向量來(lái)解.
試題解析:(Ⅰ)證明:連結(jié)OC


中,由已知可得
   
          平面      4分
(Ⅱ)解:取AC的中點(diǎn)M,連結(jié)OM、ME、OE,由E為BC的中點(diǎn)知ME∥AB,OE∥DC
直線OE與EM所成的銳角就是異面直線AB與CD所成的角
中,

是直角斜邊AC上的中線,
       8分
(Ⅲ)解:設(shè)點(diǎn)E到平面ACD的距離為確規(guī)定


中,



點(diǎn)E到平面ACD的距離為      12分
方法二:(Ⅰ)同方法一.
(Ⅱ)解:以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,則


異面直線AB與CD所成角的余弦值為
(Ⅲ)解:設(shè)平面ACD的法向量為


是平面ACD的一個(gè)法向量,   又
點(diǎn)E到平面ACD的距離 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱中,,點(diǎn)分別為的中點(diǎn).

(1)證明:平面;
(2)求所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AC是圓O的直徑,點(diǎn)B在圓O上,,交AC于點(diǎn)M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1,

(1)證明
(2)(文科)求三棱錐的體積
(理科)求平面和平面所成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,,,平面底面中點(diǎn),M是棱PC上的點(diǎn),

(1)若點(diǎn)M是棱PC的中點(diǎn),求證:平面;
(2)求證:平面底面;
(3)若二面角M-BQ-C為,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,,且,E是PC的中點(diǎn).

(1)證明:;  
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)如圖,四棱錐的底面為矩形,且,
,

(Ⅰ)平面與平面是否垂直?并說(shuō)明理由;
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直三棱柱中,,,、分別為、的中點(diǎn).

(Ⅰ)求證:平面;
(Ⅱ)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列命題中:
(1)、平行于同一直線的兩個(gè)平面平行;
(2)、平行于同一平面的兩個(gè)平面平行;
(3)、垂直于同一直線的兩直線平行;
(4)、垂直于同一平面的兩直線平行.
其中所有正確的命題有_____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于直線,和平面,,使成立的一個(gè)充分條件是(  )
A.,B.,
C.,,D.,

查看答案和解析>>

同步練習(xí)冊(cè)答案