(本題滿分14分)如圖,四棱錐的底面為矩形,且,
,,

(Ⅰ)平面與平面是否垂直?并說明理由;
(Ⅱ)求直線與平面所成角的正弦值.
(I)見解析;(Ⅱ).
本試題主要是考查了面面垂直和線面角的求解的綜合運(yùn)用。
(1)第一問中要證明面面垂直關(guān)鍵是證明線面垂直,然后利用判定定理得到。
(2)第二問先根據(jù)線面角的定義,作出線面角,然后利用直角三角形的邊角的關(guān)系求解的得到。

(I)平面平面;   …………………1分
證明:由題意得 
,則    …………………………3分
平面,                  ………………5分
故平面平面             ………………7分
(Ⅱ)解法1:以點(diǎn)A為坐標(biāo)原點(diǎn),AB所在的直線為y軸建立
空間直角坐標(biāo)系如右圖示,則,, 可得,  9分
平面ABCD的單位法向量為,          ……………………………………11分
設(shè)直線PC與平面ABCD所成角為,則  13分
,即直線PC與平面ABCD所成角的正弦值 ……………………………14分
解法2:

由(I)知平面,∵
∴平面ABCD⊥平面PAB,                                …………………………9分
在平面PAB內(nèi),過點(diǎn)P作PE⊥AB,垂足為E,則PE⊥平面ABCD,連結(jié)EC,
則∠PCE為直線PC與平面ABCD所成的角,              …………………………11分
在Rt△PEA中,∵∠PAE=60°,PA=1,∴,

 …………………………13分
在Rt△PEC中.………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四面體中,分別是、的中點(diǎn),

(Ⅰ)求證:平面;
(Ⅱ)求異面直線所成角余弦值的大小;
(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方體中,為底面的中心,的中點(diǎn),設(shè)上的中點(diǎn),求證:(1);
(2)平面∥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)四棱錐中,底面為矩形,側(cè)面底面,,,

(Ⅰ)證明:
(Ⅱ)設(shè)與平面所成的角為,
求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上.

(Ⅰ)求證:平面;
(Ⅱ)當(dāng)時(shí),求AE與平面PDB所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,直線PA垂直于圓O所在的平面,內(nèi)接于圓O,且AB為圓O的直徑,點(diǎn)M為線段PB的中點(diǎn).現(xiàn)有以下命題:①;②;③點(diǎn)A到平面PBC距離就是△PAC的PC邊上的高.④二面角P-BC-A大小不可能為450,其中真命題的個(gè)數(shù)為 (   )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別是PC、PD、BC的中點(diǎn),現(xiàn)將△PDC沿CD折起,使平面PDC⊥平面ABCD(如圖2)
(1)求二面角G-EF-D的大;
(2)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分) 22.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC, 
底面ABCD,PA=AD=DC=AB=1,M是PB的中點(diǎn)

(Ⅰ)證明:面PAD⊥面PCD;
(Ⅱ)求異面直線CM與AD所成角的正切值;
(Ⅲ)求面MAC與面BAC所成二面角的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果直線l,m與平面α、β、γ滿足β∩γ=l,,,,那么必有( 。
A.m//β且l⊥mB.α//β且α⊥γ
C.α⊥β且m//γ   D.α⊥γ且l⊥m

查看答案和解析>>

同步練習(xí)冊(cè)答案