【題目】若養(yǎng)殖場每個月生豬的死亡率不超過,則該養(yǎng)殖場考核為合格,該養(yǎng)殖場在2019年1月到8月養(yǎng)殖生豬的相關數(shù)據(jù)如下表所示:
月份 | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 |
月養(yǎng)殖量/千只3 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 12 |
月利潤/十萬元 | 3.6 | 4.1 | 4.4 | 5.2 | 6.2 | 7.5 | 7.9 | 9.1 |
生豬死亡數(shù)/只 | 29 | 37 | 49 | 53 | 77 | 98 | 126 | 145 |
(1)從該養(yǎng)殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;
(2)根據(jù)1月到8月的數(shù)據(jù),求出月利潤y(十萬元)關于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).
(3)預計在今后的養(yǎng)殖中,月利潤與月養(yǎng)殖量仍然服從(2)中的關系,若9月份的養(yǎng)殖量為1.5萬只,試估計:該月利潤約為多少萬元?
附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,
參考數(shù)據(jù):.
科目:高中數(shù)學 來源: 題型:
【題目】祖沖之是中國南北朝時期的數(shù)學家和天文學家,他在數(shù)學方面的突出貢獻是將圓周率的精確度計算到小數(shù)點后第位,也就是和之間,這一成就比歐洲早了多年,我校“愛數(shù)學”社團的同學,在祖沖之研究圓周率的方法啟發(fā)下,自制了一套計算圓周率的數(shù)學實驗模型.該模型三視圖如圖所示,模型內置一個與其各個面都相切的球,該模型及其內球在同一方向有開口裝置.實驗的時候,同學們隨機往模型中投擲大小相等,形狀相同的玻璃球,通過計算落在球內的玻璃球數(shù)量,來估算圓周率的近似值.已知某次實驗中,某同學一次投擲了個玻璃球,請你根據(jù)祖沖之的圓周率精確度(取小數(shù)點后三位)估算落在球內的玻璃球數(shù)量( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:設是正整數(shù),如果對任意正整數(shù),當時,即有,那么稱數(shù)列的前項可被數(shù)列的第項替換.已知數(shù)列的前項和是,數(shù)列是公比為1的等差數(shù)列.
(1)求數(shù)列的通項公式(用,表示);
(2)已知,數(shù)列的前項和滿足;
①求證:數(shù)列為等比數(shù)列,并求的通項公式;
②若數(shù)列的前可被數(shù)列的前項替換,且的最大值為8,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的短軸長為,離心率為.
(1)求橢圓的方程;
(2)求過橢圓的右焦點且傾斜角為135°的直線,被橢圓截得的弦長;
(3)若直線與橢圓相交于,兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高二年級的數(shù)學興趣小組釆取抽簽方式隨機分成甲、乙兩個小組進行數(shù)學解題對抗賽.每組各20人,根據(jù)各位學生在第三次數(shù)學解題對抗賽中的解題時間(單位:秒)繪制了如下莖葉圖:
(1)請評出第三次數(shù)學對抗賽的優(yōu)勝小組,并求出這40位學生完成第三次數(shù)學解題對抗賽所需時間的中位數(shù);
(2)對于(1)中的中位數(shù),根據(jù)這40位學生完成第三次數(shù)學對抗賽所需時間超過和不超過的人數(shù),完成下面的列聯(lián)表,并判斷能否有的把握認為甲、乙兩個小組在此次的數(shù)學對抗賽中的成績有差異?
超過 | 不超過 | 總計 | |
甲組 | |||
乙組 | |||
總計 |
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,以軸正半軸為極軸的極坐標中,圓的方程為.
(1)寫出直線的普通方程和圓的直角坐標方程;
(2)若點的坐標為,圓與直線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知圓與直線相切,點A為圓上一動點,軸于點N,且動點滿足,設動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設P,Q是曲線C上兩動點,線段的中點為T,,的斜率分別為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一個動圓經(jīng)過點且與直線相切,設該動圓圓心的軌跡為曲線.
(1)求曲線的方程;
(2)過點作直線交曲線于,兩點,問曲線上是否存在一個定點,使得點在以為直徑的圓上?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com