【題目】在函數(shù)定義域內(nèi),若存在區(qū)間,使得函數(shù)值域?yàn)?/span>,則稱此函數(shù)為“檔類正方形函數(shù)”,已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)若函數(shù)的最大值是1,求實(shí)數(shù)的值;
(3)當(dāng)時(shí),是否存在,使得函數(shù)為“1檔類正方形函數(shù)”?若存在,求出實(shí)數(shù)的取值范圍,若不存在,請說明理由.
【答案】(1);(2)或;(3)存在,.
【解析】
(1)根據(jù)指數(shù)函數(shù)的性質(zhì)和對數(shù)函數(shù)想性質(zhì)可得到函數(shù)的值域;
(2)利用換元法設(shè),然后對參數(shù)進(jìn)行分類討論,分和兩種情況進(jìn)行討論函數(shù)的最大值,根據(jù)最大值取得的情況計(jì)算出的取值;
(3)繼續(xù)利用換元法設(shè),設(shè)真數(shù)為,根據(jù)二次函數(shù)的性質(zhì)可得在上為增函數(shù),則,將問題轉(zhuǎn)化為方程在上有兩個(gè)不同實(shí)根進(jìn)行思考,再次利用換元法轉(zhuǎn)化為一元二次方程,根據(jù),及韋達(dá)定理可計(jì)算出實(shí)數(shù)的取值范圍.
(1)時(shí),,
因?yàn)?/span>.
所以,
所以函數(shù)的值域?yàn)?/span>
(2)設(shè),則,
若,則函數(shù)無最大值,
即無最大值,不合題意;
故,因此最大值在時(shí)取到,
且,所以,
解得或,
由,所以.
(3)因?yàn)?/span>時(shí),設(shè).設(shè)真數(shù)為.
此時(shí)對稱軸,
所以當(dāng)時(shí),為增函數(shù),且,
即在上為增函數(shù).
所以,,
即方程在上有兩個(gè)不同實(shí)根,
即,設(shè).
所以.
即方程有兩個(gè)大于l的不等實(shí)根,
因?yàn)?/span>,
所以,
解得,
即存在,使得函數(shù)為“1檔類正方形函數(shù)”,且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖設(shè)計(jì)一幅矩形宣傳畫,要求畫面面積為4840,畫面上下邊要留8cm空白,左右要留5cm空白,怎樣確定畫面高與寬的尺寸,才能使宣傳畫所用紙張面積最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線和平面:①若直線與平面內(nèi)的無數(shù)條直線平行,則;②若直線與平面內(nèi)的任意一條直線都不平行,則直線和平面相交;③若,則直線與平面內(nèi)某些直線平行;④若,則存在平面內(nèi)的直線,使.以上結(jié)論中正確的個(gè)數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求函數(shù)的解析式.
(2)求方程的解的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的空間幾何體中,平面平面,與是邊長為2的等邊三角形,,BE和平面ABC所成的角為,且點(diǎn)E在平面ABC上的射影落在的平分線上.
(1)求證:平面ABC;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若個(gè)棱長為正整數(shù)的正方體的體積之和等于2005,求的最小值,并說明理由;
(2)若個(gè)棱長為正整數(shù)的正方體的體積之和等于,求的最小值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由五個(gè)不同的數(shù)字0,1,2,5,組成無重復(fù)數(shù)字的三位數(shù)(最后結(jié)果用數(shù)字表達(dá))
(1)若,則組成的偶數(shù)有多少個(gè)?
(2)若,則比210大的數(shù)有多少個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某媒體為調(diào)查喜愛娛樂節(jié)目是否與觀眾性別有關(guān),隨機(jī)抽取了30名男性和30名女性觀眾,抽查結(jié)果用等高條形圖表示如圖:
(1)根據(jù)該等高條形圖,完成下列列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為喜歡娛樂節(jié)目與觀眾性別有關(guān)?
(2)從性觀眾中按喜歡節(jié)目與否,用分層抽樣的方法抽取5名做進(jìn)一步調(diào)查.從這5名中任選2名,求恰有1名喜歡節(jié)目和1名不喜歡節(jié)目的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com