數(shù)列的通項,其前n項和為
(1)求;
(2)求數(shù)列{}的前n項和

(1);(2)

解析試題分析:(1)化簡通項公式為,考慮到的值是周期性出現(xiàn)的,而且周期是3,故將數(shù)列三項并為一組為+++……+分別求和,進(jìn)而求;(2)求,觀察其特征選擇相應(yīng)的求和方法,通常求數(shù)列前n項和的方法有①裂項相消法,在求和過程中相互抵消的辦法;②錯位相減法,通項公式是等差數(shù)列乘以等比數(shù)列的形式;③分組求和法,將數(shù)列求和問題轉(zhuǎn)化為等差數(shù)列求和或者等比數(shù)列求和問題;④奇偶并項求和法,考慮數(shù)列相鄰兩項或者相鄰幾項的特征,進(jìn)而求和的方法,該題利用錯位相減法求和.
試題解析:(1) 由于,

,∴;
(2)
兩式相減得: 
考點:1、三角函數(shù)的周期性;2、數(shù)列求和;3、余弦的二倍角公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項和為Sn,又a1=1,a2=2,且滿足Sn+1=kSn+1,
(1)求k的值及{an}的通項公式;(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正項數(shù)列{an}的前n項和Sn滿足:-(n2n-1)Sn-(n2n)=0.
(1)求數(shù)列{an}的通項公式an;
(2)令bn,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn< .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的首項,公差,且分別是正數(shù)等比數(shù)列項.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列對任意均有成立,設(shè)的前項和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和為,且,,數(shù)列滿足.
(1)求,;
(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是單調(diào)遞增的等差數(shù)列,首項,前項和為;數(shù)列是等比數(shù)列,首項
(1)求的通項公式;
(2)令的前20項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,數(shù)列滿足,),令,
⑴求證: 是等比數(shù)列;
⑵求數(shù)列的通項公式;
⑶若,求的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的各項均為正數(shù),其前項和為,且.
⑴求證:數(shù)列是等差數(shù)列;
⑵設(shè),求證:;
⑶設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列{an}中,a1=1,當(dāng)n≥2時,其前n項和Sn滿足.
(1)求Sn的表達(dá)式;
(2)設(shè)bn,求{bn}的前n項和Tn.

查看答案和解析>>

同步練習(xí)冊答案