【題目】已知直線與橢圓交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),若橢圓的離心率滿(mǎn)足,則橢圓長(zhǎng)軸的取值范圍是( )

A. B. C. D.

【答案】A

【解析】

聯(lián)立直線方程與橢圓方程得(a2+b2x22a2x+a2a2b20,設(shè)Px1y1),Qx2,y2),由OPOQ,得0,由根與系數(shù)的關(guān)系可得:a2+b22a2b2.由橢圓的離心率e滿(mǎn)足e,化為,即可得出.

聯(lián)立 得:(a2+b2x22a2x+a2a2b20,設(shè)Px1,y1),Qx2,y2

△=4a44a2+b2)(a2a2b2)>0,化為:a2+b21

x1+x2 ,x1x2.∵OPOQ,

x1x2+y1y2x1x2+x11)(x21)=2x1x2﹣(x1+x2+10

2×+10.化為a2+b22a2b2.∴b2

∵橢圓的離心率e滿(mǎn)足e,∴,∴,,化為54a26

解得: 2a .滿(mǎn)足△>0.∴橢圓長(zhǎng)軸的取值范圍是[,]

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在矩形中,,沿直線BD將△ABD折成,使得點(diǎn)在平面上的射影在內(nèi)(不含邊界),設(shè)二面角的大小為,直線 ,與平面中所成的角分別為,則(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知棱長(zhǎng)為2的正方體中,EDC中點(diǎn),F在線段上運(yùn)動(dòng),則三棱錐的外接球的表面積最小值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx,若任意t∈(a1a),使得ft)>ft+1),則實(shí)數(shù)a的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機(jī)抽取100個(gè)商家,對(duì)它們的“平均送達(dá)時(shí)間”進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如下.

(1)已知抽取的100個(gè)使用A款訂餐軟件的商家中,甲商家的“平均送達(dá)時(shí)間”為18分鐘,F(xiàn)從使用A款訂餐軟件的商家中“平均送達(dá)時(shí)間”不超過(guò)20分鐘的商家中隨機(jī)抽取3個(gè)商家進(jìn)行市場(chǎng)調(diào)研,求甲商家被抽到的概率;

(2)試估計(jì)該市使用A款訂餐軟件的商家的“平均送達(dá)時(shí)間”的眾數(shù)及平均數(shù);

(3)如果以“平均送達(dá)時(shí)間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)在微信上查詢(xún)到近十年全國(guó)高考報(bào)名人數(shù)、錄取人數(shù)和山東夏季高考報(bào)名人數(shù)的折線圖,其中年的錄取人數(shù)被遮擋了.他又查詢(xún)到近十年全國(guó)高考錄取率的散點(diǎn)圖,結(jié)合圖表中的信息判定下列說(shuō)法正確的是(

A.全國(guó)高考報(bào)名人數(shù)逐年增加

B.年全國(guó)高考錄取率最高

C.年高考錄取人數(shù)約萬(wàn)

D.年山東高考報(bào)名人數(shù)在全國(guó)的占比最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,斜三棱柱中,是邊長(zhǎng)為2的正三角形,的中點(diǎn),平面,點(diǎn)上,,的交點(diǎn),且與平面所成的角為

1)求證:平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),時(shí),恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn)且離心率為

1)求橢圓的方程;

2)如圖所示,設(shè)橢圓的右頂點(diǎn)為,是橢圓上異于點(diǎn)的兩點(diǎn),直線,的斜率分別為,若,試判斷直線是否經(jīng)過(guò)一個(gè)定點(diǎn)?若是,則求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案