【題目】為了讓學(xué)生更多的了解數(shù)學(xué)史知識(shí),某中學(xué)高二年級(jí)舉辦了一次追尋先哲的足跡,傾聽(tīng)數(shù)學(xué)的聲音的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng),共有800名學(xué)生參加了這次競(jìng)賽,為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果見(jiàn)下表.請(qǐng)你根據(jù)頻率分布表解答下列問(wèn)題:

序號(hào)

分組(分?jǐn)?shù))

組中值

頻數(shù)(人數(shù))

頻率

1

65

0.12

2

75

20

3

85

0.24

4

95

合計(jì)

50

1

1)填充頻率分布表中的空格;

2)規(guī)定成績(jī)不低于85分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在參加的800名學(xué)生中大概有多少名同學(xué)獲獎(jiǎng)?

3)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見(jiàn)算法流程圖,求輸出的的值.

【答案】(1)①為6,②為0.4,③為12,④為12,⑤為0.24;(2)288名(3)81

【解析】

1)根據(jù)已知條件和頻率公式計(jì)算填充頻率分布表中的空格;(2)先求出成績(jī)不低于85分的同學(xué)的頻率,再估計(jì)在參加的800名學(xué)生中大概有多少名同學(xué)獲獎(jiǎng);(3)由題得,即得解.

1,所以①為6,所以②為0.4

,所以③為12,所以④為12;

,所以⑤為0.24.

2)成績(jī)不低于85分的同學(xué)的頻率,

所以

即在參加的800名學(xué)生中大概有288名同學(xué)獲獎(jiǎng).

3)由流程圖得,

即輸出的值為81.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗(yàn),其次品率與日產(chǎn)量 (萬(wàn)件)之間滿足關(guān)系, (其中為常數(shù),且,已知每生產(chǎn)1萬(wàn)件合格的產(chǎn)品以盈利2萬(wàn)元,但每生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元(注:次品率=次品數(shù)/生產(chǎn)量, 如表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).

1)試將生產(chǎn)這種產(chǎn)品每天的盈利額 (萬(wàn)元)表示為日產(chǎn)量 (萬(wàn)件)的函數(shù);

2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,

1)求證:平面;

2)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的最小正周期、單調(diào)區(qū)間;

2)求函數(shù)在區(qū)間上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家鞋帽商場(chǎng)銷售同一批品牌運(yùn)動(dòng)鞋,每雙標(biāo)價(jià)為800元,甲、乙兩商場(chǎng)銷售方式如下:在甲商場(chǎng)買一雙售價(jià)為780元,買兩雙每雙售價(jià)為760元,依次類排,每多買一雙則所買各雙售價(jià)都再減少20元,但每雙售價(jià)不能低于440元;乙商場(chǎng)一律按標(biāo)價(jià)的75%銷售.

1)分別寫出在甲、乙兩商場(chǎng)購(gòu)買雙運(yùn)動(dòng)鞋所需費(fèi)用的函數(shù)解析式;

2)某單位需購(gòu)買一批此類品牌運(yùn)動(dòng)鞋作為員工福利,問(wèn):去哪家商場(chǎng)購(gòu)買花費(fèi)較少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三棱柱ABCA1B1C1中,側(cè)棱AA1⊥底面A1B1C1AA11,底面三角形A1B1C1是邊長(zhǎng)為2的正三角形,EBC中點(diǎn),則下列說(shuō)法正確的是(

CC1AB1所成角的余弦值為

AB⊥平面ACC1A1

③三角形AB1E為直角三角形

A1C1∥平面AB1E

A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在區(qū)間上單調(diào)遞減,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)圓錐底面半徑為,高為,

1)求圓錐的表面積.

2)求圓錐的內(nèi)接正四棱柱表面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】棱長(zhǎng)為1的正方體中,點(diǎn)、分別在線段、上運(yùn)動(dòng)(不包括線段端點(diǎn)),且.以下結(jié)論:①;②若點(diǎn)、分別為線段的中點(diǎn),則由線確定的平面在正方體上的截面為等邊三角形;③四面體的體積的最大值為;④直線與直線的夾角為定值.其中正確的結(jié)論為______.(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案