精英家教網 > 高中數學 > 題目詳情

【題目】已知集合A={x|a﹣1≤x≤2a+3},B={x|﹣2≤x≤4},全集U=R
(1)當a=2時,求A∪B和(RA)∩B;
(2)若A∩B=A,求實數a的取值范圍.

【答案】
(1)解:當a=2時,A={x|1≤x≤7},

則A∪B={x|﹣2≤x≤7},RA={x|x<1或x>7},(RA)∩B={x|﹣2≤x<1};


(2)解:∵A∩B=A,∴AB,

①若A=,則a﹣1>2a+3,解得a<﹣4;

②若A≠,由AB,得到 ,

解得:﹣1≤a≤

綜上:a的取值范圍是(﹣∞,﹣4]∪[﹣1, ]


【解析】(1)把a=2代入A確定出A,求出A∪B和(RA)∩B即可;(2)由A與B的交集為A,得到A為B的子集,分A為空集與A不為空集兩種情況求出a的范圍即可.
【考點精析】關于本題考查的交、并、補集的混合運算,需要了解求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=
(1)判斷函數f(x)在區(qū)間[1,+∞)上的單調性,并用定義證明你的結論;
(2)求函數f(x)在區(qū)間[2,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知坐標平面上點與兩個定點, 的距離之比等于5.

(1)求點的軌跡方程,并說明軌跡是什么圖形;

2)記(1)中的軌跡為,過點的直線所截得的線段的長為 8,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:方程表示焦點在x軸上的橢圓;命題q:雙曲線的離心率e.若命題“pq”為真命題,“pq”為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,若方程恰有兩個不相等的實根,則的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=x2﹣ax+3,且對任意的實數x都有f(4﹣x)=f(x)成立.
(1)求實數a的值;
(2)求函數f(x)在區(qū)間[0,3]上的值域;
(3)要得到函數y=x2的圖象只需要將二次函數y=f(x)的圖象做怎樣的變換得到.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)滿足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1,
(1)求f(x)的解析式;
(2)當x∈[﹣1,1]時,求函數g(x)=f(x)﹣2x的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤分別是P(單位:萬元)和Q(單位:萬元),它們與投入資金t(單位:萬元)的關系有經驗公式P= t,Q= .今將3萬元資金投入經營甲、乙兩種商品,其中對甲種商品投資x(單位:萬元),
(1)試建立總利潤y(單位:萬元)關于x的函數關系式;
(2)當對甲種商品投資x(單位:萬元)為多少時?總利潤y(單位:萬元)值最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工程設備租賃公司為了調查A,B兩種挖掘機的出租情況,現隨機抽取了這兩種挖掘機各100臺,分別統計了每臺挖掘機在一個星期內的出租天數,統計數據如下表:


(I)根據這個星期的統計數據,將頻率視為概率,求該公司一臺A型挖掘機,一臺B型挖掘機一周內合計出租天數恰好為4天的概率;

(II)如果A,B兩種挖掘機每臺每天出租獲得的利潤相同,該公司需要從A,B兩種挖掘機中購買一臺,請你根據所學的統計知識,給出建議應該購買哪一種類型,并說明你的理由.

查看答案和解析>>

同步練習冊答案