自然狀態(tài)下的魚類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強(qiáng)度對(duì)魚群總量的影響. 用xn表示某魚群在第n年年初的總量,n∈N*,且x1>0.不考慮其它因素,設(shè)在第n年內(nèi)魚群的繁殖量及捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a,b,c.
(Ⅰ)求xn+1與xn的關(guān)系式;
(Ⅱ)猜測(cè):當(dāng)且僅當(dāng)x1,a,b,c滿足什么條件時(shí),每年年初魚群的總量保持不變?(不要求證明)
(Ⅲ)設(shè)a=2,b>0,c=1為保證對(duì)任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強(qiáng)度b的最大允許值是多少?證明你的結(jié)論.
(I)從第n年初到第n+1年初,魚群的繁殖量為axn,被捕撈量為bxn,死亡量為

(II)猜測(cè):當(dāng)且僅當(dāng)a>b,且時(shí),每年年初魚群的總量保持不變.
(Ⅲ)為保證對(duì)任意x1∈(0, 2), 都有xn>0, n∈N*,則捕撈強(qiáng)度b的最大允許值是1.
本題是對(duì)數(shù)列、函數(shù)、數(shù)學(xué)歸納法等知識(shí)的綜合考查,在作數(shù)列方面的應(yīng)用題時(shí),一定要認(rèn)真真審題,仔細(xì)解答,避免錯(cuò)誤.
(Ⅰ)利用題中的關(guān)系求出魚群的繁殖量,被捕撈量和死亡量就可得到xn+1與xn的關(guān)系式;
(Ⅱ)每年年初魚群的總量保持不變就是xn恒等于x1,轉(zhuǎn)化為xn+1-xn=0恒成立,再利用(Ⅰ)的結(jié)論,就可找到x1,a,b,c所滿足的條件;
(Ⅲ)先利用(Ⅰ)的結(jié)論找到關(guān)于xn和b的不等式,再利用x1∈(0,2),求出b的取值范圍以及b的最大允許值,最后在用數(shù)學(xué)歸納法進(jìn)行證明即可.
解(I)從第n年初到第n+1年初,魚群的繁殖量為axn,被捕撈量為bxn,死亡量為

(II)若每年年初魚群總量保持不變,則xn恒等于x1, n∈N*,從而由(*)式得

因?yàn)閤1>0,所以a>b.
猜測(cè):當(dāng)且僅當(dāng)a>b,且時(shí),每年年初魚群的總量保持不變.
(Ⅲ)若b的值使得xn>0,n∈N*
由xn+1=xn(3-b-xn), n∈N*, 知
0<xn<3-b, n∈N*, 特別地,有0<x1<3-b. 即0<b<3-x1.
而x1∈(0, 2),所以
由此猜測(cè)b的最大允許值是1.
下證 當(dāng)x1∈(0, 2) ,b=1時(shí),都有xn∈(0, 2), n∈N*
①當(dāng)n=1時(shí),結(jié)論顯然成立.
②假設(shè)當(dāng)n=k時(shí)結(jié)論成立,即xk∈(0, 2),
則當(dāng)n=k+1時(shí),xk+1=xk(2-xk­)>0.
又因?yàn)閤k+1=xk(2-xk)=-(xk-1)2+1≤1<2,
所以xk+1∈(0, 2),故當(dāng)n=k+1時(shí)結(jié)論也成立.
由①、②可知,對(duì)于任意的n∈N*,都有xn∈(0,2).
綜上所述,為保證對(duì)任意x1∈(0, 2), 都有xn>0, n∈N*,則捕撈強(qiáng)度b的最大允許值是1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,則= _________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用二分法研究函數(shù)f(x)=x3+3x-1的零點(diǎn)時(shí),第一次經(jīng)計(jì)算f(0)<0,f(0.5)>0,可得其中一個(gè)零點(diǎn)x0∈__________,第二次應(yīng)計(jì)算__________.以上橫線上應(yīng)填的內(nèi)容為(  )
A.(0,0.5),f(0.25)B.(0,1),f(0.25)
C.(0.5,1),f(0.75)D.(0,0.05),f(0.125)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之內(nèi),其年生產(chǎn)的
總成本(萬(wàn)元)與年產(chǎn)量(噸)之間的關(guān)系可近似地表示為
(1)當(dāng)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低,并求每噸最低平均成本;
(2)若每噸平均出廠價(jià)為16萬(wàn)元,求年生產(chǎn)多少噸時(shí),可獲得最大的年利潤(rùn),并求最大年
利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知定義域?yàn)镽的函數(shù)為奇函數(shù)。且滿足,當(dāng)時(shí),,則=       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù) 
(Ⅰ)當(dāng)時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若,若分別為的極大值和極小值,若,求取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)例如,,當(dāng)
,的解集為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的定義域?yàn)?u>              .  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(2008浙江高考,文11)已知函數(shù)f(x)=x2+|x-2|,則f(1)=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案