【題目】對于四面體ABCD,以下命題中,真命題的序號為(填上所有真命題的序號)
①若AB=AC,BD=CD,E為BC中點(diǎn),則平面AED⊥平面ABC;
②若AB⊥CD,BC⊥AD,則BD⊥AC;
③若所有棱長都相等,則該四面體的外接球與內(nèi)切球的半徑之比為2:1;
④若以A為端點(diǎn)的三條棱所在直線兩兩垂直,則A在平面BCD內(nèi)的射影為△BCD的垂心;
⑤分別作兩組相對棱中點(diǎn)的連線,則所得的兩條直線異面.
【答案】①②④
【解析】解:如圖,對于①,∵AB=AC,BD=CD,E為BC中點(diǎn),
∴AE⊥BC,DE⊥BC,
又AE∩ED=E,
∴BC⊥面AED,
∴面AED⊥平面ABC.
∴命題①正確;
對于②,過A作底面BCD的垂線AO,垂足為O,
連結(jié)BO并延長交CD于F,連結(jié)DO并延長交BC于E,
由線面垂直的判定可以證明BF⊥CD,DE⊥BC,從而可知O為底面三角形的垂心,
連結(jié)CO并延長交BD于G,則CG⊥BD,再由線面垂直的判斷得到BD⊥面ACG,從而得到BD⊥AC.
∴命題②正確;
對于③,若所有棱長都相等,四面體為正四面體,該四面體的外接球半徑是四面體高的四分之三,
內(nèi)切球的半徑是四面體高的四分之一,∴該四面體的外接球與內(nèi)切球的半徑之比為3:1.
∴命題③錯誤;
對于④,若AB⊥AC⊥AD,過A作底面BCD的垂線AO,垂足為O,
由AB⊥AC,AB⊥AD,且AC∩AD=A,得AB⊥面ACD,則AB⊥CD,進(jìn)一步由線面垂直的判定證得CD⊥面ABO,
則BO⊥CD,同理可證CO⊥BD,說明O為△BCD的垂心.命題④正確;
對于⑤,如圖,
∵E、F、G、H分別為BC、AC、BD、AD的中點(diǎn),
∴HF∥DC,GE∥DC,
∴EFHG為平面四邊形.
∴命題⑤錯誤.
∴真命題的序號是①②④.
所以答案是:①②④.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用和異面直線的判定的相關(guān)知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系;過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線和平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線.(不在任何一個平面內(nèi)的兩條直線).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)對一切實(shí)數(shù)x,y均有f(x+y)﹣f(y)=(x+2y+2)x成立,且f(2)=12.
(1)求f(0)的值;
(2)在(1,4)上存在x0∈R,使得f(x0)﹣8=ax0成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,前n項(xiàng)和為, 是首項(xiàng)為2的等比數(shù)列,且公比大于0, ,, .
(Ⅰ)求和的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=( )2表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標(biāo)系的原點(diǎn);
③函數(shù)y=3(x﹣1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④y=2|x|的最小值為1
⑤對于函數(shù)f(x),若f(﹣1)f(3)<0,則方程f(x)=0在區(qū)間[﹣1,3]上有一實(shí)根;
其中正確命題的序號是(填上所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設(shè)命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位有車牌尾號為的汽車和尾號為的汽車,兩車分屬于兩個獨(dú)立業(yè)務(wù)部分.對一段時間內(nèi)兩輛汽車的用車記錄進(jìn)行統(tǒng)計,在非限行日, 車日出車頻率, 車日出車頻率.該地區(qū)汽車限行規(guī)定如下:
車尾號 | 和 | 和 | 和 | 和 | 和 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
現(xiàn)將汽車日出車頻率理解為日出車概率,且, 兩車出車相互獨(dú)立.
(I)求該單位在星期一恰好出車一臺的概率.
(II)設(shè)表示該單位在星期一與星期二兩天的出車臺數(shù)之和,求的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l被兩直線l1:4x+y+6=0和l2:3x﹣5y﹣6=0截得線段的中點(diǎn)為P(0,0),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是減函數(shù),又f(﹣2)=0,則(x﹣3)f(x)<0的解集是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購物者進(jìn)行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實(shí)體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實(shí)體店.
(1)若從10名購物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;
(2)若從這10名購物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com