數(shù)列1,數(shù)學(xué)公式數(shù)學(xué)公式,…,數(shù)學(xué)公式的各項(xiàng)和為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:數(shù)列1,,,…,一共有n+1項(xiàng),然后直接利用等比數(shù)列的求和公式求解即可得到正確選項(xiàng).
解答:1+++…+==
故選B.
點(diǎn)評:本題主要考查了等比數(shù)列的求和,解題的關(guān)鍵弄清數(shù)列的項(xiàng)數(shù),同時考查了計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)把自然數(shù)按上小下大、左小右大的原則排成如圖的三角形數(shù)表(每行比上一行多一個數(shù)).設(shè)aij(i,j∈N*)是位于這個三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)的第j個數(shù)(如a42=8).
(1)試用i表示aii(不要求證明);
(2)若aij=2008,求i,j的值;
(3)記三角形數(shù)表從上往下數(shù)第n行的各數(shù)之和為bn,令cn=
1,(n=1)
n
bn-n
,(n≥2)
,若數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把數(shù)列{2n+1}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號一個數(shù)…循環(huán)下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,則第14個括號內(nèi)的各數(shù)字之和
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知整數(shù)數(shù)列{an}滿足:a1=1,a2=2,且2an-1<an-1+an+1<2an+1(n∈N,n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)將數(shù)列{an}中的所有項(xiàng)依次按如圖所示的規(guī)律循環(huán)地排成如下三角形數(shù)表:
精英家教網(wǎng)

依次計算各個三角形數(shù)表內(nèi)各行中的各數(shù)之和,設(shè)由這些和按原來行的前后順序構(gòu)成的數(shù)列為{bn},求b5+b100的值;
(3)令cn=2+ban+b•2an-1(b為大于等于3的正整數(shù)),問數(shù)列{cn}中是否存在連續(xù)三項(xiàng)成等比數(shù)列?若存在,求出所有成等比數(shù)列的連續(xù)三項(xiàng);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一個奇數(shù)列1,3,5,7,9,…,現(xiàn)進(jìn)行如下分組:第1組含有一個數(shù){1},第2組含兩個數(shù){3,5};第3組含三個數(shù){7,9,11};…試觀察每組內(nèi)各數(shù)之和與其組的編號數(shù)n的關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對一切n∈N*,點(diǎn)(n,Sn)在函數(shù)f(x)=x2+x的圖象上.
(1)求an的表達(dá)式;
(2)設(shè)An為數(shù)列{
1(an-1)(an+1)
}的前n項(xiàng)和,是否存在實(shí)數(shù)a
,使得不等式An<a對一切n∈N*都成立?若存在,求出a的取值范圍;若不存在,請說明理由;
(3)將數(shù)列{an}依次按1項(xiàng),2項(xiàng)循環(huán)地分為(a1),(a2,a3),(a4),(a5,a6),(a7),(a8,a9),(a10),
…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},求b100的值;
(4)如果將數(shù)列{an}依次按1項(xiàng),2項(xiàng),3項(xiàng),4項(xiàng)循環(huán);分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},提出同(3)類似的問題((3)應(yīng)當(dāng)作為特例),并進(jìn)行研究,你能得到什么樣的結(jié)論?

查看答案和解析>>

同步練習(xí)冊答案