把數(shù)列{2n+1}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號一個數(shù)…循環(huán)下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,則第14個括號內(nèi)的各數(shù)字之和
 
分析:先判斷前面13個括號的數(shù)總數(shù),從而可得第14個括號的第一個數(shù)在整個排列中的項數(shù),結(jié)合數(shù)列是公差為2的等差數(shù)列,代入等差數(shù)列的求和公式求值即可.
解答:解:設(shè)第n個數(shù)為an=2n+1
前面13個括號中共用了1+2+…+13=91個數(shù),
而a92=2×92+1=185
第14個括號內(nèi)的數(shù)字構(gòu)成185為首項,以2為公差的等差數(shù)列,且有14項
S=185×14+
14×13
2
×2
=2872
故答案為:2872
點評:本題是等差數(shù)列的通項公式的簡單運用及等差數(shù)列的求和公式,屬于基本知識的運用,試題較易.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、把數(shù)列{2n+1}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號一個數(shù),…,循環(huán)分為:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,則第60個括號內(nèi)各數(shù)之和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把數(shù)列{2n+1}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號五個數(shù)…如此下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,則第104個括號內(nèi)各數(shù)字之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把數(shù)列{2n+1}依次按一項、二項、三項、四項循環(huán)分為(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100個括號內(nèi)各數(shù)之和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把數(shù)列{2n+1}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號一個數(shù),第六個括號兩個數(shù),…,循環(huán)下去,如:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),…,則第104個括號內(nèi)各數(shù)字之和為
2072
2072

查看答案和解析>>

同步練習(xí)冊答案