已知橢圓=1(a>b>0)的離心率e=,連結(jié)橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點A,B.已知點A的坐標(biāo)為(-a,0).若|AB|=,求直線l的傾斜角.
(1)+y2=1(2)
(1)由e=,解得3a2=4c2.再由c2=a2-b2,解得a=2b.
由題意可知×2a×2b=4,即ab=2.解方程組
所以橢圓的方程為+y2=1.
(2)由(1)可知點A(-2,0),設(shè)點B的坐標(biāo)為(x1,y1),直線l的斜率為k,則直線l的方程為y=k(x+2).于是A、B兩點的坐標(biāo)滿足方程組
消去y并整理,得(1+4k2)x2+16k2x+(16k2-4)=0,
由-2x1,得x1,從而y1,
故|AB|=.
由|AB|=,得.整理得32k4-9k2-23=0,
即(k2-1)(32k2+23)=0,解得k=±1.所以直線l的傾斜角為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知離心率為的橢圓的頂點恰好是雙曲線的左右焦點,點是橢圓上不同于的任意一點,設(shè)直線的斜率分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng),在焦點在軸上的橢圓上求一點Q,使該點到直線(的距離最大。
(3)試判斷乘積“(”的值是否與點(的位置有關(guān),并證明你的結(jié)論;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為, 焦距為2,過作垂直于橢圓長軸的弦長為3
(1)求橢圓的方程;
(2)若過點的動直線交橢圓于A、B兩點,判斷是否存在直線使得為鈍角,若存在,求出直線的斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,且過點A(0,1).
 
(1)求橢圓的方程;
(2)過點A作兩條互相垂直的直線分別交橢圓于點M、N,求證:直線MN恒過定點P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓C:+y2=1的兩焦點為F1,F(xiàn)2,點P(x0,y0)滿足≤1,則PF1+PF2的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別是橢圓的左,右焦點,現(xiàn)以為圓心作一個圓恰好經(jīng)過橢圓中心并且交橢圓于點,若過的直線是圓的切線,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

F1,F(xiàn)2是橢圓+y2=1的左右焦點,點P在橢圓上運(yùn)動.則的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:
(1)兩準(zhǔn)線間的距離為,焦距為2
(2)已知P點在以坐標(biāo)軸為對稱軸的橢圓上,點P到兩焦點的距離分別為,過P點作長軸的垂線恰好過橢圓的一個焦點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓+=1(a>b>0)與拋物線y2=2px(p>0)有相同的焦點,P、Q是橢圓與拋物線的交點,若PQ經(jīng)過焦點F,則橢圓+=1(a>b>0)的離心率為    .

查看答案和解析>>

同步練習(xí)冊答案