已知函數(shù)在(1,2)上是增函數(shù),在(0,1)上是減函數(shù)。
求的值;
當(dāng)時,若在內(nèi)恒成立,求實數(shù)的取值范圍;
求證:方程在內(nèi)有唯一解.
(Ⅰ),
(Ⅱ)。(Ⅲ)方程=0在內(nèi)有唯一解。
【解析】
試題分析:(Ⅰ)對任意的恒成立,因此。同理,由即對任意恒成立,因此。所以,
。
(Ⅱ),時,為減函數(shù),最小值為1.
令,則.
∵,,∴,∴在上為增函數(shù),其最大值為
。
∴,得,故。
(Ⅲ)由得
設(shè),則,
令,由得,解得,
令得,則
,有最小值0,且當(dāng)時,,
∴方程=0在內(nèi)有唯一解。
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值、最值,方程的解。
點評:典型題,在給定區(qū)間,導(dǎo)數(shù)非負(fù),函數(shù)為增函數(shù),導(dǎo)數(shù)非正,函數(shù)為減函數(shù)。涉及“不等式恒成立”“方程的解”等問題,往往通過構(gòu)造函數(shù),轉(zhuǎn)化成求函數(shù)的最值問題,利用導(dǎo)數(shù)加以解決。
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省瑞安中學(xué)高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:填空題
.已知函數(shù)在區(qū)間[1,2]上不是單調(diào)函數(shù),則錯誤!不能通過編輯域代碼創(chuàng)建對象。的范圍為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:填空題
.已知函數(shù)在區(qū)間[1,2]上不是單調(diào)函數(shù),則錯誤!不能通過編輯域代碼創(chuàng)建對象。的范圍為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年江西省高二下學(xué)期第一次月考數(shù)學(xué)理卷 題型:選擇題
已知函數(shù)在[-1,2]上是減函數(shù),那么=( )
A、有最大值 B、有最大值-9 C、有最小值 D、有最小值-9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com