已知離心率為的橢圓的中心在遠點,焦點在x軸上.雙曲線以橢圓的長軸為實軸,短軸為虛軸,且焦距為

(1)求橢圓及雙曲線的方程;

(2)設(shè)橢圓的左、右定點分別為A、B,在第二象限內(nèi)取雙曲線上一點P,連接BP交橢圓于點M,連接PA并延長交橢圓于點N,若求四邊形ANBM的面積.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

 . 已知離心率為的橢圓的右焦點是圓的圓心,過橢圓上的動點P作圓的兩條切線分別交軸于M、N兩點.

(I)求橢圓的方程;

(II)求線段MN長的最大值,并求此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣西桂林十八中高三第二次月考試卷理科數(shù)學 題型:解答題

(本小題滿分12分)已知離心率為的橢圓上的點到

 

左焦點的最長距離為

(1)求橢圓的方程;

(2)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點軸上,且使得的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.

 

                                                      

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年廣東省華南師大附中高三周六自測數(shù)學試卷1(文科)(解析版) 題型:解答題

已知離心率為的橢圓C的中心在坐標原點O,一焦點坐標為(1,0),圓O的方程為x2+y2=7.
(1)求橢圓C的方程,并證明橢圓C在圓O內(nèi);
(2)過橢圓C上的動點P作互相垂直的兩條直線l1,l2,l1與圓O相交于點A,C,l2與圓O相交于點B,D(如圖),求四邊形ABCD的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年福建省廈門市高三質(zhì)量檢查數(shù)學試卷(理科)(解析版) 題型:解答題

已知離心率為的橢圓的右焦點F是圓(x-1)2+y2=1的圓心,過橢圓上的動點P作圓的兩條切線分別交y軸于M、N兩點.
(1)求橢圓的方程;
(2)求線段MN長的最大值,并求此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:廣西桂林十八中2011-2012學年高三第二次月考試題數(shù)學理 題型:解答題

 

     已知離心率為的橢圓上的點到左焦點的最長距離為

(1)求橢圓的方程;

(2)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點軸上,且使得的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.

                                                       

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案