已知數(shù)列的各項均為正數(shù),其前項和為,且.
⑴求證:數(shù)列是等差數(shù)列;
⑵設(shè),求證:;
⑶設(shè),,求.
(1)詳見解析;(2)詳見解析;(3)

試題分析:(1)一般數(shù)列問題中出現(xiàn)數(shù)列前的和與其項時,則可利用關(guān)系找出數(shù)列的遞推關(guān)系,本題可從此入手,證明數(shù)列為等差數(shù)列;(2)由(1)可求出,根據(jù)此式的結(jié)構(gòu)特征,可得,利用裂項相消法求其前的和后再予以判斷;(3)根據(jù)數(shù)列的結(jié)構(gòu)特點(等差乘等比型)可用錯位相減法求和.證明數(shù)列為等差數(shù)列或等比數(shù)列,應(yīng)緊扣定義,通過對所給條件變形,得到遞推關(guān)系,而等差乘等比型數(shù)列的求和最常用的就是錯位相減法,使用這個方法在計算上要有耐心和細心,注意各項的符號,防止出錯.
試題解析:⑴證明:,當(dāng)時,,又.            1分
,得,

數(shù)列是以1為首項,1為公差的等差數(shù)列;            4分
⑵證明:由⑴知,

.            8分
,,      ①
         ②
由①-②得,
.            12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在等差數(shù)列中,已知.
(1)求;
(2)若,設(shè)數(shù)列的前項和為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列,滿足
(I)求證:數(shù)列均為等比數(shù)列;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列滿足,.
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè),求數(shù)列的前項和;
(3)設(shè),數(shù)列的前項和為,求證:(其中).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列滿足,數(shù)列滿足.
(Ⅰ)證明數(shù)列是等差數(shù)列并求數(shù)列的通項公式;
(Ⅱ)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項和為,數(shù)列的首項,且點在直線上.
(1)求數(shù)列,的通項公式;
(2)若,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義數(shù)列;數(shù)列;數(shù)列;若的前n項的積為,的前n項的和為,那么(    )
A.B.2C.3D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}的前n項和Sn滿足
(Ⅰ)求數(shù)列{an}和{bn}的通項公式:
(Ⅱ)設(shè)Tn為數(shù)列{Sn}的前n項和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列滿足,,若數(shù)列滿足,則(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案