【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的直角坐標(biāo)方程,并求時(shí)直線的普通方程;

2)若直線和曲線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.

【答案】1;2

【解析】

1)由,可得,兩邊同時(shí)乘以,然后結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線的直角坐標(biāo)方程,由直線的參數(shù)方程可知直線過定點(diǎn),并求得直線的斜率,即可寫出直線的普通方程;

(2)把直線的參數(shù)方程代入曲線的普通方程,化為關(guān)于的一元二次方程,利用判別式、根與系數(shù)的關(guān)系及此時(shí)的幾何意義求解即可.

解:(1)因?yàn)?/span>,得

∴黃線的直角坐標(biāo)方程為

當(dāng)時(shí),直線過定點(diǎn),斜率.

∴直線的普通方程為,即

2)把直線的參數(shù)方程為代入,

.

設(shè)的參數(shù)分別為,所以,,則同號(hào),

,則,即

的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.,的必要不充分條件

B.為真命題為真命題的必要不充分條件

C.命題的否定是:使得

D.命題p,則是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)籠子里關(guān)著只貓,其中有只白貓,只黑貓.把籠門打開一個(gè)小口,使得每次只能鉆出只貓.貓爭(zhēng)先恐后地往外鉆.如果只貓都鉆出了籠子,以表示只白貓被只黑貓所隔成的段數(shù).例如,在出籠順序?yàn)椤啊酢觥酢酢酢酢觥酢酢觥敝,則

1)求三只黑貓挨在一起出籠的概率;

2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過去五年,我國的扶貧工作進(jìn)入了“精準(zhǔn)扶貧”階段.目前“精準(zhǔn)扶貧”覆蓋了全部貧困人口,東部幫西部,全國一盤棋的扶貧格局逐漸形成.2020年底全國830個(gè)貧困縣都將脫貧摘帽,最后4335萬貧困人口將全部脫貧,這將超過全球其他國家過去30年脫貧人口總和.2020年是我國打贏脫貧攻堅(jiān)戰(zhàn)收官之年,越是到關(guān)鍵時(shí)刻,更應(yīng)該強(qiáng)調(diào)“精準(zhǔn)”.為落實(shí)“精準(zhǔn)扶貧”政策,某扶貧小組,為一“對(duì)點(diǎn)幫扶”農(nóng)戶引種了一種新的經(jīng)濟(jì)農(nóng)作物,并指導(dǎo)該農(nóng)戶于2020年初開始種植.已知該經(jīng)濟(jì)農(nóng)作物每年每畝的種植成本為1000元,根據(jù)前期各方面調(diào)查發(fā)現(xiàn),該經(jīng)濟(jì)農(nóng)作物的市場(chǎng)價(jià)格和畝產(chǎn)量均具有隨機(jī)性,且兩者互不影響,其具體情況如下表:

該經(jīng)濟(jì)農(nóng)作物畝產(chǎn)量(kg)

該經(jīng)濟(jì)農(nóng)作物市場(chǎng)價(jià)格(/kg)

概率

概率

1)設(shè)2020年該農(nóng)戶種植該經(jīng)濟(jì)農(nóng)作物一畝的純收入為X元,求X的分布列;

2)若該農(nóng)戶從2020年開始,連續(xù)三年種植該經(jīng)濟(jì)農(nóng)作物,假設(shè)三年內(nèi)各方面條件基本不變,求這三年中該農(nóng)戶種植該經(jīng)濟(jì)農(nóng)作物一畝至少有兩年的純收入不少于16000元的概率;

32020年全國脫貧標(biāo)準(zhǔn)約為人均純收入4000.假設(shè)該農(nóng)戶是一個(gè)四口之家,且該農(nóng)戶在2020年的家庭所有支出與其他收入正好相抵,能否憑這一畝經(jīng)濟(jì)農(nóng)作物的純收入,預(yù)測(cè)該農(nóng)戶在2020年底可以脫貧?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面為平行四邊形,底面,,,,.

(Ⅰ)求證:平面平面;

(Ⅱ)若E是側(cè)棱上的一點(diǎn),且與底面所成的是為45°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面為正方形,且底面,的平面與側(cè)面的交線為,且滿足表示的面積.

1)證明: 平面;

(2)當(dāng)時(shí),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:某快遞小哥從A地出發(fā),沿小路以平均時(shí)速20公里/小時(shí),送快件到C處,已知(公里),,,是等腰三角形,.

1)試問,快遞小哥能否在50分鐘內(nèi)將快件送到C處?

2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車平均時(shí)速60公里/小時(shí),問,汽車能否先到達(dá)C處?

參考值:,, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,為正方形,且平面平面,點(diǎn)為棱的中點(diǎn).

1)在棱上是否存在一點(diǎn),使得平面?并說明理由;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)x[1,e]時(shí),fx)的最小值為_____;設(shè)gx)=[fx]2fx+a若函數(shù)gx)有6個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案