如圖,直三棱柱中,,點(diǎn)分別為和的中點(diǎn).
(Ⅰ)證明:∥平面;
(Ⅱ)求異面直線(xiàn)與所成角的大小.
(Ⅰ)證明見(jiàn)試題解析;(Ⅱ).
解析試題分析:(Ⅰ)證線(xiàn)面平行,一般根據(jù)線(xiàn)面平行的判定定理,在平面內(nèi)找到一條與平行的直線(xiàn)即可.由于四邊形是正方形,點(diǎn)也是的中點(diǎn),故是的中位線(xiàn),∥,得證.(Ⅱ)要求異面直線(xiàn)所成的角的大小,一般是先作出這兩條異面直線(xiàn)所成的角,由(Ⅰ) ∥,故異面直線(xiàn)與所成角即或其補(bǔ)角,下面我們只要通過(guò)解,求出即可,要注意的是異面直線(xiàn)所成的角不大于.
試題解析:(Ⅰ)證明:連結(jié)、,由已知條件,四邊形是正方形,點(diǎn)也是的中點(diǎn),故有∥ 4分
又 面 ,面
∥平面 8分
(Ⅱ)解:由(1)可知 ∥,故異面直線(xiàn)與所成角即或其補(bǔ)角 10分
且 面
, 12分
故,即異面直線(xiàn)與所成角大小為 14分
考點(diǎn):(Ⅰ)線(xiàn)面平行;(Ⅱ)異面直線(xiàn)所成的角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖①,△BCD內(nèi)接于直角梯形,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三邊將△A1BD、△A2BC、△A3CD翻折上去,恰好形成一個(gè)三棱錐ABCD,如圖②.
(1)求證:AB⊥CD;
(2)求直線(xiàn)BD和平面ACD所成的角的正切值;
(3)求四面體的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在直角梯形中,,,,. 把沿對(duì)角線(xiàn)折起到的位置,如圖2所示,使得點(diǎn)在平面上的正投影恰好落在線(xiàn)段上,連接,點(diǎn)分別為線(xiàn)段的中點(diǎn).
(1)求證:平面平面;
(2)求直線(xiàn)與平面所成角的正弦值;
(3)在棱上是否存在一點(diǎn),使得到點(diǎn)四點(diǎn)的距離相等?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,兩座建筑物AB,CD的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是9m和15m,從建筑物AB的頂部A看建筑物CD的張角.
(1)求BC的長(zhǎng)度;
(2)在線(xiàn)段BC上取一點(diǎn)P(點(diǎn)P與點(diǎn)B,C不重合),從點(diǎn)P看這兩座建筑物的張角分別為,,問(wèn)點(diǎn)P在何處時(shí),最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四面體中,、分別是、的中點(diǎn),
(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平行四邊形中,,,,以為折線(xiàn),把折起,使平面平面,連結(jié).
(Ⅰ)求證:;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(1)證明:AC⊥B1D;
(2)求直線(xiàn)B1C1與平面ACD1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱中,,點(diǎn)分別為和的中點(diǎn).
(1)證明:平面;
(2)平面MNC與平面MAC夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面平面,是正方形,,且,、、分別是線(xiàn)段、、的中點(diǎn).
(1)求證:平面;
(2)求異面直線(xiàn)、所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com