如圖,四面體中,分別是、的中點,

(Ⅰ)求證:平面
(Ⅱ)求二面角的正切值;
(Ⅲ)求點到平面的距離.

(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)

解析試題分析:(1)由題意可知,為等腰三角形,邊上的中線,所以,再由已知條件算出的三條邊長,由此根據(jù)勾股定理,可證,從而得證平面;(2)作于F,連AF,由(1)知, 故,所以 ,則 是二面角的平面角,利用平面幾何知識即可算出其正切值;(3)設點E到平面ACD的距離為因為,所以,從而求出.也可以點為原點,建立空間直角坐標系,寫出各個點的坐標,利用利用空間向量方法,求解各個小題,詳見解析.
試題解析:(Ⅰ)證明:連結OC


中,由已知可得

平面
(Ⅱ)解: 作于F,連AF
由(1)知, 故 
 , 是二面角的平面角,
易知,.
即所求二面角的正切值為 
(Ⅲ)解:設點E到平面ACD的距離為


中,



點E到平面ACD的距離為
方法二:(Ⅰ)同方法一.
(Ⅱ)解:以O為原點,如圖建立空間直角坐標系,則

(Ⅲ)解:設平面ACD的法向量為


是平面ACD的一個法向量,又
點E到平面ACD的距離
考點:本題考查的知識點是空間直線與平面垂直的判定,空間點到平面的距離,二面角的平面角,其中(I)的關鍵是熟練掌握空間線線垂直與線面垂直之間的轉(zhuǎn)化,(II)(III)的關鍵是建立空間坐標系,利用向量法解決空間距離和夾角問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱ABC—A1B1C1中, ,直線B1C與平面ABC成45°角。

(1)求證:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.

(I) 試判斷直線CD與平面PAD是否垂直,并簡述理由;
(II)求證:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖:四邊形是梯形,,,三角形是等邊三角形,且平面 平面,,,

(1)求證:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱中,,

(Ⅰ)求證:平面;
(Ⅱ)若的中點,求與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱中,,點分別為的中點.

(Ⅰ)證明:∥平面;
(Ⅱ)求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在棱BB1上運動.

(Ⅰ)證明:AD⊥C1E;
(Ⅱ)當異面直線AC,C1E 所成的角為60°時,求三棱錐C1-A1B1E的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知在四棱錐中,底面是矩形,平面,、分別是、的中點.

(Ⅰ)求證:平面;
(Ⅱ)若與平面所成角為,且,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2(1)PD.

(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D—PQ—C的余弦值.

查看答案和解析>>

同步練習冊答案