【題目】已知數(shù)列滿足, ,其中.

(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;

(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.

【答案】(1) ;(2) 的最小值為3.

【解析】試題分析:(1)利用遞推公式即可得出為一個(gè)常數(shù),從而證明數(shù)列是等差數(shù),再利用等差數(shù)列的通項(xiàng)公式即可得到,進(jìn)而得到;(2)利用(1)的結(jié)論,利用裂項(xiàng)求和即可得到,要使得對于恒成立,只要,,解出即可.

試題解析:(1)證明:

所以數(shù)列是等差數(shù)列,

,因此,

.

(2)由,

所以,

所以

因?yàn)?/span>,所以恒成立,

依題意要使對于,恒成立,只需,且 解得, 的最小值為.

【方法點(diǎn)晴】裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),掌握一些常見的裂項(xiàng)技巧:①;②

;③;

;此外,需注意裂項(xiàng)之后相消的過程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱中, ,側(cè)面底面, 的中點(diǎn), .

(Ⅰ)求證: ;

(Ⅱ)求直線與平面所成線面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)包裝箱內(nèi)有6件產(chǎn)品,其中4件正品,2件次品,F(xiàn)隨機(jī)抽出兩件產(chǎn)品.(要求羅列出所有的基本事件)

(1)求恰好有一件次品的概率。

(2)求都是正品的概率。

(3)求抽到次品的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的不等式ax2﹣(a+2)x+2<0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCD中,AB10cm,BC8cm.將其按圖(1)的方法分割,并按圖(2)的方法焊接成扇形;按圖(3)的方法將寬BC 等分,把圖(3)中的每個(gè)小矩形按圖(1)分割并把4個(gè)小扇形焊接成一個(gè)大扇形;按圖(4)的方法將寬BC 等分,把圖(4)中的每個(gè)小矩形按圖(1)分割并把6個(gè)小扇形焊接成一個(gè)大扇形;……;依次將寬BC 等分,每個(gè)小矩形按圖(1)分割并把個(gè)小扇形焊接成一個(gè)大扇形.當(dāng)n時(shí),最后拼成的大扇形的圓心角的大小為 ( )

A. 小于 B. 等于 C. 大于 D. 大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面四邊形是矩形,平面,分別是的中點(diǎn),.

(1)求證:平面;

(2)求二面角的大小;

(3)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面底面,,,平分,的中點(diǎn),,,,,分別為上一點(diǎn),且.

(1)若,證明:平面.

(2)過點(diǎn)作平面的垂線,垂足為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為、,過點(diǎn)

且斜率為的直線與軸交于點(diǎn), 與橢圓交于另一個(gè)點(diǎn),且點(diǎn)軸上的射影恰好為點(diǎn)

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)且斜率大于的直線與橢圓交于兩點(diǎn)(),若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y).當(dāng)x>0時(shí),f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若 , 試求f(x)在區(qū)間[﹣2,6]上的最值;

查看答案和解析>>

同步練習(xí)冊答案