【題目】把一個(gè)圓分成n(n≥2)個(gè)扇形,依次記為,每一扇形都可用紅、白、藍(lán)三種不同顏色的任一種涂色,要求相鄰的扇形的顏色互不相同,問(wèn)有多少種涂色法?
【答案】
【解析】
設(shè)涂法總數(shù)為.
當(dāng)時(shí),先對(duì)涂色有三種涂法,涂色后,繼涂,只有2種涂法,因而.
下面確定遞歸關(guān)系.
若先涂,有3種涂法;繼涂,只有2種涂法,然后涂,若只求與顏色不同,則有2種涂法,…,如此下去,最后圖,如只要求與顏色不同(這里未涉及與的顏色)仍有2種涂法,這樣總共有種涂法,但此種涂法可分為兩類;一類是與的顏色不同,這種涂法符合要求,總數(shù)為;另一類則是與的顏色相同,這種涂法不符合題設(shè)要求.如果把和合并,看成一個(gè)扇形,這類涂法相當(dāng)于把圓分成個(gè)扇形,按題設(shè)要求的涂法,其總數(shù)為,于是得遞歸關(guān)系:
,即.
為求,令,則上式變成,得且,
∴,∴,
∴,
故總共有種涂法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市環(huán)保部門對(duì)該市市民進(jìn)行了一次動(dòng)物保護(hù)知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參'與問(wèn)卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 15 | 5 | 10 |
若規(guī)定問(wèn)卷得分不低于70分的市民稱為“動(dòng)物保護(hù)關(guān)注者”,則山圖中表格可得列聯(lián)表如下:
非“動(dòng)物保護(hù)關(guān)注者” | 是“動(dòng)物保護(hù)關(guān)注者” | 合計(jì) | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合計(jì) | 25 | 75 | 100 |
(1)請(qǐng)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“動(dòng)物保護(hù)關(guān)注者”與性別有關(guān)?
(2)若問(wèn)卷得分不低于80分的人稱為“動(dòng)物保護(hù)達(dá)人”.現(xiàn)在從本次調(diào)查的“動(dòng)物保護(hù)達(dá)人”中利用分層抽樣的方法隨機(jī)抽取6名市民參與環(huán)保知識(shí)問(wèn)答,再?gòu)倪@6名市民中抽取2人參與座談會(huì),求抽取的2名市民中,既有男“動(dòng)物保護(hù)達(dá)人”又有女“動(dòng)物保護(hù)達(dá)人”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)是拋物線:的焦點(diǎn),動(dòng)直線過(guò)點(diǎn)且與拋物線相交于,兩點(diǎn).當(dāng)直線變化時(shí),的最小值為4.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn),分別作拋物線的切線,,與相交于點(diǎn),,與軸分別交于點(diǎn),,求證:與的面積之比為定值(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)面底面,,.
(Ⅰ)求證:平面;
(Ⅱ)若,,且與平面所成的角為,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
(1)討論函數(shù)的單凋性;
(2)若存在使得對(duì)任意的不等式(其中e為自然對(duì)數(shù)的底數(shù))都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)圓內(nèi)有6000個(gè)點(diǎn),其中任三點(diǎn)都不共線;①能否把這個(gè)圓分成2000塊,使每塊恰含有三個(gè)點(diǎn),如何分?②若每塊中三點(diǎn)滿足:兩兩間的距離皆為整數(shù)且不超過(guò)9,則以每塊中的三點(diǎn)為頂點(diǎn)作三角形,這些三角形中大小完全一樣的三角形至少有多少個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富學(xué)生的課外文化生活,某中學(xué)積極探索開(kāi)展課外文體活動(dòng)的新途徑及新形式,取得了良好的效果.為了調(diào)查學(xué)生的學(xué)習(xí)積極性與參加文體活動(dòng)是否有關(guān),學(xué)校對(duì)200名學(xué)生做了問(wèn)卷調(diào)查,列聯(lián)表如下:
參加文體活動(dòng) | 不參加文體活動(dòng) | 合計(jì) | |
學(xué)習(xí)積極性高 | 80 | ||
學(xué)習(xí)積極性不高 | 60 | ||
合計(jì) | 200 |
已知在全部200人中隨機(jī)抽取1人,抽到學(xué)習(xí)積極性不高的學(xué)生的概率為.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.9%的把握認(rèn)為學(xué)習(xí)積極性高與參加文體活動(dòng)有關(guān)?請(qǐng)說(shuō)明你的理由;
(3)若從不參加文體活動(dòng)的同學(xué)中按照分層抽樣的方法選取5人,再?gòu)乃x出的5人中隨機(jī)選取2人,求至少有1人學(xué)習(xí)積極性不高的概率.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自出生之日起,人的情緒、體力、智力等心理、生理狀況就呈周期變化,變化由線為.根據(jù)心理學(xué)家的統(tǒng)計(jì),人體節(jié)律分為體力節(jié)律、情緒節(jié)律和智力節(jié)律三種.這些節(jié)律的時(shí)間周期分別為23天、28天、33天.每個(gè)節(jié)律周期又分為高潮期、臨界日和低潮期三個(gè)階段.以上三個(gè)節(jié)律周期的半數(shù)為臨界日,這就是說(shuō)11.5天、14天、16.5天分別為體力節(jié)律、情緒節(jié)律和智力節(jié)律的臨界日.臨界日的前半期為高潮期,后半期為低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003年3月20日(每年按365天計(jì)算).
(1)請(qǐng)寫出小英的體力、情緒和智力節(jié)律曲線的函數(shù);
(2)試判斷小英在2019年4月22日三種節(jié)律各處于什么階段,當(dāng)日小英是否適合參加某項(xiàng)體育競(jìng)技比賽?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形的中線與中位線相交于,已知是繞旋轉(zhuǎn)過(guò)程中的一個(gè)圖形,下列命題中,錯(cuò)誤的是
A. 恒有⊥
B. 異面直線與不可能垂直
C. 恒有平面⊥平面
D. 動(dòng)點(diǎn)在平面上的射影在線段上
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com