根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.

(1)焦距為10,漸近線方程為y=±x;

(2)過點(diǎn)P(3,-),離心率為.

解:(1)由漸近線方程y=±x可設(shè)雙曲線方程為-y2=λ(λ≠0),即=1.

由a2+b2=c2得|4λ|+|λ|=25,即λ=±5.

∴所求雙曲線方程為=1或=1.

(2)依題意,雙曲線的焦點(diǎn)可能在x軸上,也可能在y軸上,分別討論如

下:若雙曲線焦點(diǎn)在x軸上,設(shè)=1為所求.

由e=,得.①

由點(diǎn)P(3,-2)在雙曲線上,得=1.②

又a2+b2=c2,由①②得a2=1,b2=.

∴雙曲線方程為x2-4y2=1.

若雙曲線焦點(diǎn)在y軸上,設(shè)=1為所求.

同理有=,=1,a2+b2=c2.

解之,得b2=(不合題意,舍去).

故雙曲線的焦點(diǎn)只能在x軸上,

所有雙曲線方程為x2-4y2=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•福建)某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分為5組:[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
P(x2≥k) 0.100 0.050 0.010 0.001
k 2.706 3.841 6.635 10.828

(I)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(II)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?附:x2=
n(n11n22-n12n21)
n1*n2*n*1n*2
(注:此公式也可以寫成k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷(解析版) 題型:解答題

某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān).現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,在將兩組工人的日平均生產(chǎn)件數(shù)分成5組: ,,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.

(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?

  

附表:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(福建卷解析版) 題型:解答題

某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分為5組:分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(I)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;

(II)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

 

25周歲以上組                          25周歲以下組

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省大慶市鐵人中學(xué)高二(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分為5組:[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

(I)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(II)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?附:(注:此公式也可以寫成k2=

查看答案和解析>>

同步練習(xí)冊答案