某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分為5組:分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(I)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;
(II)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?
0.100 |
0.050 |
0.010 |
0.001 |
|
k |
2.706 |
3.841 |
6.635 |
10.828 |
25周歲以上組 25周歲以下組
(I)(II)沒(méi)有把握
【解析】 (Ⅰ)由已知得,樣本中有周歲以上組工人名,周歲以下組工人名
所以,樣本中日平均生產(chǎn)件數(shù)不足件的工人中,周歲以上組工人有(人),
記為,,;周歲以下組工人有(人),記為,
從中隨機(jī)抽取名工人,所有可能的結(jié)果共有種,他們是:,,,,,,,,,
其中,至少有名“周歲以下組”工人的可能結(jié)果共有種,它們是:,,,,,,.故所求的概率:
(Ⅱ)由頻率分布直方圖可知,在抽取的名工人中,“周歲以上組”中的生產(chǎn)能手(人),“周歲以下組”中的生產(chǎn)能手(人),據(jù)此可得列聯(lián)表如下:
|
生產(chǎn)能手 |
非生產(chǎn)能手 |
合計(jì) |
周歲以上組 |
|||
周歲以下組 |
|||
合計(jì) |
所以得:
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081513041434939375/SYS201308151305142956583082_DA.files/image034.png">,所以沒(méi)有的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”
對(duì)于獨(dú)立性檢驗(yàn)的考查要求學(xué)生會(huì)用公式,并且懂得算法過(guò)程并懂得結(jié)論的給出,應(yīng)該算容易題,可往往學(xué)生會(huì)被這么長(zhǎng)的題目所嚇倒,再加上統(tǒng)計(jì)與概率的結(jié)合就會(huì)變?yōu)殡y點(diǎn).此題比較容易出現(xiàn)計(jì)算和結(jié)論上的失誤,而造成不必要的失分.
【考點(diǎn)定位】 本題主要考查古典概型、抽樣方法、獨(dú)立性檢驗(yàn)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、應(yīng)用意識(shí),考查必然與或然思想、化歸與轉(zhuǎn)化思想等.屬于中等難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
P(x2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
n(n11n22-n12n21) |
n1*n2*n*1n*2 |
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年四川眉山市高三上學(xué)期一診測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
某工廠有25周歲以上(含2S周歲)工人300名,25周歲以下工人200名為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100),分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖。
(1)求樣本中“25周歲以上(含25周歲)組”抽取的人數(shù)、日生產(chǎn)量平均數(shù);
(2)若“25周歲以上組”中日平均生產(chǎn)90件及90件以上的稱為“生產(chǎn)能手”;“25周歲以下組”中日平均生產(chǎn)不足60件的稱為“菜鳥(niǎo)”。從樣本中的“生產(chǎn)能手”和”菜鳥(niǎo)”中任意抽取2人,求這2人日平均生產(chǎn)件數(shù)之和X的分布列及期望。(“生產(chǎn)能手”日平均生產(chǎn)件數(shù)視為95件,“菜鳥(niǎo)”日平均生產(chǎn)件數(shù)視為55件)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年四川眉山市高三上學(xué)期一診測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
某工廠有25周歲以上(含2S周歲)工人300名,25周歲以下工人200名為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60), [60,70), [70,80), [80,90), [90,100), 分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖。
(1)求樣本中“25周歲以上(含25周歲)組”抽取的人數(shù)、日生產(chǎn)量平均數(shù);
(2)若“25周歲以上組”中日平均生產(chǎn)90件及90件以上的稱為“生產(chǎn)能手”;“25周歲以下組”中日平均生產(chǎn)不足60件的稱為“菜鳥(niǎo)”。從樣本中的“生產(chǎn)能手”和”菜鳥(niǎo)”中任意抽取2人,求這2人日平均生產(chǎn)件數(shù)之和X的分布列及期望。(“生產(chǎn)能手”日平均生產(chǎn)件數(shù)視為95件,“菜鳥(niǎo)”日平均生產(chǎn)件數(shù)視為55件)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷(解析版) 題型:解答題
某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān).現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,在將兩組工人的日平均生產(chǎn)件數(shù)分成5組: ,,,,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?
附表:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com