【題目】選修4-5:不等式選講

已知函數(shù)

(1)當(dāng)時,求不等式的解集;

(2)若不等式的解集為空集,求實數(shù)的取值范圍.

【答案】(1) [0,4];(2) [3,+∞)∪(﹣∞,﹣1].

【解析】試題分析: (1)利用絕對值不等式的解法,去掉絕對值,求解即可.

2)問題轉(zhuǎn)化為 ,利用絕對值三角不等式直接求解即可.

試題解析:

(Ⅰ)當(dāng)a=3時,f(x)=|x﹣3|+|x﹣1|,

即有f(x)=,

不等式f(x)≤4即為,

即有0≤x<13≤x≤41≤x<3,

則為0≤x≤4,

則解集為[0,4];

(Ⅱ)依題意知,f(x)=|x﹣a|+|x﹣1|≥2恒成立,

∴2≤f(x)min;

由絕對值三角不等式得:f(x)=|x﹣a|+|x﹣1|≥|(x﹣a)+(1﹣x)|=|1﹣a|,

f(x)min=|1﹣a|,

∴|1﹣a|≥2,即a﹣1≥2a﹣1≤﹣2,

解得a≥3a≤﹣1.

實數(shù)a的取值范圍是[3,+∞)∪(﹣∞,﹣1].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 平面 分別為的中點, 是邊長為2 的正三角形, .

(1)證明: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準(zhǔn)保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

按照我國《機動車交通事故責(zé)任強制保險條例》汽車交強險價格的規(guī)定, .某同學(xué)家里有一輛該品牌車且車齡剛滿三年,記為該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個位數(shù)字)

某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設(shè)購進一輛事故車虧損5000元,一輛非事故車盈利10000元:

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,sinB= ,cosA= ,則sinC為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P(1,1),過點P動直線l與圓C:x2+y2﹣2y﹣4=0交與點A,B兩點.
(1)若|AB|= ,求直線l的傾斜角;
(2)求線段AB中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C對應(yīng)的邊長分別為a、b、c.已知acosB﹣ b=
(1)求角A;
(2)若a= ,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用秦九韶算法求多項式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,當(dāng)x=3時的值,并將結(jié)果化為8進制數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的四個頂點組成的四邊形的面積為,且經(jīng)過點.

1)求橢圓的方程;

(2)若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于兩點,與交于點,四邊形的面積分別為.的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,側(cè)棱底面 , , , ,且點分別為的中點.

1)求證: 平面

2求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案