(本小題滿分12分)在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(1)求曲線C1的方程;
(2)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過(guò)P作圓C2的兩條切線,分別與曲線C1相交于
點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=﹣4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
(1).
(2)當(dāng)P在直線上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值6400.
(1) 曲線上任意一點(diǎn)M到圓心的距離等于它到直線的距離,由拋物線的定義可知曲線C1為拋物線,此方程為.
(2) 當(dāng)點(diǎn)P在直線上運(yùn)動(dòng)時(shí),設(shè)P的坐標(biāo)為,又,則過(guò)P且與圓
相切的切線方程為.則
整理得
設(shè)過(guò)P所作的兩條切線的斜率分別為,則是方程①的兩個(gè)實(shí)根,


設(shè)四點(diǎn)A,B,C,D的縱坐標(biāo)分別為,
同理由可得
這樣可得,然后展開(kāi)將代入化簡(jiǎn)即可得到定值.
由題設(shè)知,曲線上任意一點(diǎn)M到圓心的距離等于它到直線的距離,因此,曲線是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,故其方程為.
(2)當(dāng)點(diǎn)P在直線上運(yùn)動(dòng)時(shí),P的坐標(biāo)為,又,則過(guò)P且與圓
相切得直線的斜率存在且不為0,每條切線都與拋物線有兩個(gè)交點(diǎn),切線方程為.
于是
整理得       ①
設(shè)過(guò)P所作的兩條切線的斜率分別為,則是方程①的兩個(gè)實(shí)根,
     ②
    ③
設(shè)四點(diǎn)A,B,C,D的縱坐標(biāo)分別為,則是方程③的兩個(gè)實(shí)根,
所以   ④
同理可得    ⑤
于是由②,④,⑤三式得

.
所以,當(dāng)P在直線上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值6400.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)過(guò)點(diǎn)P(0,0),Q(4,2),R(-1,-3)三點(diǎn)的圓的標(biāo)準(zhǔn)方程式什么?
(2)已知?jiǎng)狱c(diǎn)M到點(diǎn)A(2,0)的距離是它到點(diǎn)B(-1,0)的距離的倍,求:(1)動(dòng)點(diǎn)M的軌跡方程;(2)根據(jù)取值范圍指出軌跡表示的圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(理)(本題滿分14分)如圖,已知直線,直線以及上一點(diǎn)

(Ⅰ)求圓心M在上且與直線相切于點(diǎn)的圓⊙M的方程.
(Ⅱ)在(Ⅰ)的條件下;若直線分別與直線、圓⊙依次相交于AB、C三點(diǎn),
求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)
求圓心在直線上,且經(jīng)過(guò)圓與圓的交點(diǎn)的圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分) 已知圓過(guò)兩點(diǎn),且圓心上.
(1)求圓的方程;
(2)設(shè)是直線上的動(dòng)點(diǎn),是圓的兩條切線,為切點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線和圓相交于點(diǎn)A、B,則AB的垂直平分線方程是               

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知圓與拋物線的準(zhǔn)線相切,則的值為()
A.1B.2C.D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

能夠使得圓  上恰有兩個(gè)點(diǎn)到直線 的距離等于1的 的一個(gè)可能值為(   )
A.2B.C.3D.

查看答案和解析>>

同步練習(xí)冊(cè)答案