【題目】函數(shù)y= 的定義域是(
A.[1,+∞)
B.(1,+∞)
C.(0,1]
D.( ,1]

【答案】D
【解析】解:要使函數(shù)有意義,則log0.5(3x﹣2)≥0,

即0<3x﹣2≤1,得 <x≤1,

即函數(shù)的定義域?yàn)椋? ,1],

故選:D

【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的定義域及其求法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=ax2﹣2(a+1)x+3(a∈R).
(1)若函數(shù)f(x)在 單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)令h(x)= ,若存在 ,使得|h(x1)﹣h(x2)|≥ 成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2﹣(1+a)x+y2﹣ay+a=0(a∈R). (Ⅰ) 若a=1,求直線y=x被圓C所截得的弦長(zhǎng);
(Ⅱ) 若a>1,如圖,圓C與x軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)).過(guò)點(diǎn)M的動(dòng)直線l與圓O:x2+y2=4相交于A,B兩點(diǎn).問(wèn):是否存在實(shí)數(shù)a,使得對(duì)任意的直線l均有∠ANM=∠BNM?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx﹣ )( <ω<2),在區(qū)間(0, )上(
A.既有最大值又有最小值
B.有最大值沒(méi)有最小值
C.有最小值沒(méi)有最大值
D.既沒(méi)有最大值也沒(méi)有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=4sinx(cosx﹣sinx)+3 (Ⅰ)當(dāng)x∈(0,π)時(shí),求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x)在[0,θ]上的值域?yàn)閇0,2 +1],求cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合M={x|﹣a<x<a+1,a∈R},集合N={x|x2﹣2x﹣3≤0}.
(1)當(dāng)a=1時(shí),求M∪N及N∩RM;
(2)若x∈M是x∈N的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=| ﹣ax|,若對(duì)任意的正實(shí)數(shù)a,總存在x0∈[1,4],使得f(x0)≥m,則實(shí)數(shù)m的取值范圍為(
A.(﹣∞,0]
B.(﹣∞,1]
C.(﹣∞,2]
D.(﹣∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,x∈[2,6].
(1)證明f(x)是減函數(shù);
(2)若函數(shù)g(x)=f(x)+sinα的最大值為0,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,AB=2,點(diǎn)E是BC的中點(diǎn).

(1)求線段DE的長(zhǎng);
(2)求直線A1E與平面ADD1A1所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案