【題目】已知正方形ABCD的邊長(zhǎng)為2,AC∩BD=O.將正方形ABCD沿對(duì)角線BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.
(1)當(dāng)a=2時(shí),求證:AO⊥平面BCD.
(2)當(dāng)二面角A-BD-C的大小為120°時(shí),求二面角A-BC-D的正切值.
【答案】(1)見(jiàn)解析 (2)
【解析】
(1)根據(jù)題意,在△AOC中,AC=a=2,AO=CO=,
所以AC2=AO2+CO2,所以AO⊥CO.
又AO⊥BD,BD∩CO=O,
所以AO⊥平面BCD.
(2)折疊后,BD⊥AO,BD⊥CO.所以∠AOC是二面角A-BD-C的平面角,即∠AOC=120°.在△AOC中,AO=CO=,所以AC=.
如圖,過(guò)點(diǎn)A作CO的垂線交CO延長(zhǎng)線于點(diǎn)H,
因?yàn)?/span>BD⊥CO,BD⊥AO,且CO∩AO=O,所以BD⊥平面AOC.因?yàn)?/span>AH平面AOC,所以BD⊥AH.
又CO⊥AH,且CO∩BD=O,所以AH⊥平面BCD.所以AH⊥BC.過(guò)點(diǎn)A作AK⊥BC,垂足為K,連接HK,因?yàn)?/span>BC⊥AH,AK∩AH=A,所以BC⊥平面AHK.因?yàn)?/span>HK平面AHK,所以BC⊥HK.所以∠AKH為二面角A-BC-D的平面角.
在△AOH中,得AH=,OH=,所以CH=CO+OH=+=.
在Rt△CHK中,HK==,
在Rt△AHK中,tan∠AKH===.
所以二面角A-BC-D的正切值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】個(gè)人排成一排,在下列情況下,各有多少種不同排法?
(1)甲不在兩端;
(2)甲、乙、丙三個(gè)必須在一起;
(3)甲、乙必須在一起,且甲、乙都不能與丙相鄰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,F為x軸正半軸上的一個(gè)動(dòng)點(diǎn).以F為焦點(diǎn)、O為頂點(diǎn)作拋物線C.設(shè)P為第一象限內(nèi)拋物線C上的一點(diǎn),Q為x軸負(fù)半軸上一點(diǎn),使得PQ為拋物線C的切線,且.圓C1、C2均與直線OP切于點(diǎn)P,且均與x軸相切.求點(diǎn)F的坐標(biāo),使圓C1與C2的面積之和取到最小值,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠的檢驗(yàn)員為了檢測(cè)生產(chǎn)線上生產(chǎn)零件的情況,從產(chǎn)品中隨機(jī)抽取了個(gè)進(jìn)行測(cè)量,根據(jù)所測(cè)量的數(shù)據(jù)畫出頻率分布直方圖如下:
注:尺寸數(shù)據(jù)在內(nèi)的零件為合格品,頻率作為概率.
(Ⅰ) 從產(chǎn)品中隨機(jī)抽取件,合格品的個(gè)數(shù)為,求的分布列與期望;
(Ⅱ) 從產(chǎn)品中隨機(jī)抽取件,全是合格品的概率不小于,求的最大值;
(Ⅲ) 為了提高產(chǎn)品合格率,現(xiàn)提出兩種不同的改進(jìn)方案進(jìn)行試驗(yàn).若按方案進(jìn)行試驗(yàn)后,隨機(jī)抽取件產(chǎn)品,不合格個(gè)數(shù)的期望是;若按方案試驗(yàn)后,抽取件產(chǎn)品,不合格個(gè)數(shù)的期望是,你會(huì)選擇哪個(gè)改進(jìn)方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,其中.
(Ⅰ) 判斷函數(shù)在上的單調(diào)性;
(Ⅱ) 設(shè)函數(shù)的定義域?yàn)?/span>,且有極值點(diǎn).
(ⅰ) 試判斷當(dāng)時(shí), 是否滿足題目的條件,并說(shuō)明理由;
(ⅱ) 設(shè)函數(shù)的極小值點(diǎn)為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于,兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1千多年.在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵,陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉臑指四個(gè)面均為直角三角形的四面體.如圖,在塹堵中,.
(1)求證:四棱錐為陽(yáng)馬;并判斷四面體是否為鱉臑,若是,請(qǐng)寫出各個(gè)面的直角(要求寫出結(jié)論).
(2)若,當(dāng)陽(yáng)馬體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com