已知橢圓中心在原點,焦點在軸上,焦距為2,離心率為

(1)求橢圓的方程;

(2)設(shè)直線經(jīng)過點(0,1),且與橢圓交于兩點,若,求直線的方程.

 

【答案】

(1);(2).

【解析】

試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程等基礎(chǔ)知識,考查用代數(shù)法研究圓錐曲線的性質(zhì),考查運算求解能力、綜合分析和解決問題的能力.第一問,先利用橢圓的焦距、離心率求出基本量,寫出橢圓方程;第二問,由于直線經(jīng)過(0,1)點,所以先設(shè)出直線方程,與橢圓聯(lián)立,消參得到關(guān)于x的方程,先設(shè)出點坐標(biāo),通過方程得到兩根之和、兩根之積,再由,得出,聯(lián)立上述表達式得k的值,從而得到直線方程.

試題解析:(1)設(shè)橢圓方程為,

因為,所以,

所求橢圓方程為                                 4分

(2)由題得直線的斜率存在,設(shè)直線方程為

則由,

設(shè),則由   ..8分

,

所以消去

解得

所以直線的方程為,即      12分

考點:1.橢圓的標(biāo)準(zhǔn)方程;2.直線方程;3.韋達定理.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓中心在原點,F(xiàn)是焦點,A為頂點,準(zhǔn)線l交x軸于點B,點P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中比值為橢圓的離心率的有( 。
A、1個B、3個C、4個D、5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點,焦點在x軸上,右焦點到短軸端點的距離為2,到右頂點的距離為1,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點,焦點在x軸上,離心率e=
2
2
,點F1,F(xiàn)2分別為橢圓的左、右焦點,過右焦點F2且垂直于長軸的弦長為
2

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的左焦點F1作直線l,交橢圓于P,Q兩點,若
F2P
F2Q
=2
,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓中心在原點,焦點在x軸,長軸長為短軸長的3倍,且過點P(3,2),求此橢圓的方程;
(2)求與雙曲線
x2
5
-
y2
3
=1
有公共漸近線,且焦距為8的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓中心在原點,F(xiàn)是焦點,A為頂點,準(zhǔn)線l交x軸于點B,點P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則橢圓的離心率是①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中正確的是
①②③④⑤
①②③④⑤

查看答案和解析>>

同步練習(xí)冊答案