已知橢圓中心在原點,焦點在軸上,焦距為2,離心率為
(1)求橢圓的方程;
(2)設(shè)直線經(jīng)過點(0,1),且與橢圓交于兩點,若,求直線的方程.
(1);(2)或.
【解析】
試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程等基礎(chǔ)知識,考查用代數(shù)法研究圓錐曲線的性質(zhì),考查運算求解能力、綜合分析和解決問題的能力.第一問,先利用橢圓的焦距、離心率求出基本量,寫出橢圓方程;第二問,由于直線經(jīng)過(0,1)點,所以先設(shè)出直線方程,與橢圓聯(lián)立,消參得到關(guān)于x的方程,先設(shè)出點坐標(biāo),通過方程得到兩根之和、兩根之積,再由,得出,聯(lián)立上述表達式得k的值,從而得到直線方程.
試題解析:(1)設(shè)橢圓方程為,
因為,所以,
所求橢圓方程為 4分
(2)由題得直線的斜率存在,設(shè)直線方程為
則由得,
設(shè),則由得 ..8分
又,
所以消去得
解得
所以直線的方程為,即或 12分
考點:1.橢圓的標(biāo)準(zhǔn)方程;2.直線方程;3.韋達定理.
科目:高中數(shù)學(xué) 來源: 題型:
|PF| |
|PD| |
|QF| |
|BF| |
|AO| |
|BO| |
|AF| |
|AB| |
|FO| |
|AO| |
A、1個 | B、3個 | C、4個 | D、5個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
2 |
F2P |
F2Q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
5 |
y2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|PF| |
|PD| |
|QF| |
|BF| |
|AO| |
|BO| |
|AF| |
|AB| |
|FO| |
|AO| |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com